
INTERACTING WITH FEDERATED DEVICES

Elmar Braun∗ and Max Mühlhäuser†

Abstract. Some ubiquitous computing visions propose to embed an abundance of input and output
devices in the environment. Depending on the context, the user can either interact with her limited
personal device, or input and output devices from the surrounding infrastructure. But what about
situations in which the user has need for the capabilities of both types of devices at the same time? A
user might need to display something privately, while needing the screen real estate of a large wall
mounted display. For such situations we propose using mobile devices together with those provided
by the environment. We have developed a runtime environment that coordinates multiple devices to
do just that. Currently we are exploring the usability of the use of multiple devices concurrently. We
are also investigating the problems of authoring such interfaces.

1. Introduction

Many ubiquitous computing projects have explored embedding all sorts of input and output devices
in the environment. It started by making desktop computers context aware. Rather than being tied to
one’s personal computer, users could walk up to any computer and start using it, because it recognized
the user and automatically displayed her desktop [3]. With modern hardware it is becoming affordable
to embed large flat touch screens into the walls of buildings.

All this hardware in the environment should make interaction very convenient. Of course there are a
few cases in which users cannot rely on the infrastructure. If that is the case, the ubiquitous cell phone
(or some other private device like a PDA) offers last resort fall-back means of interaction. However,
upon closer examination, hardware embedded in the environment is quite limited in many contexts:

• Spatial restrictions: If a screen (and the displayed content) is sufficiently large, it can be read
from some distance. However, the context from which one can interact with a touch screen
shrinks down to an arm’s length.

• Device restrictions: Although it might be inconvenient in some cases, a touch screen at least
allows the user to approach it to interact. But what about a display without touch interaction?
It might not be a touch screen because it is mounted out of the user’s reach, because of clean-
liness, or simply because it is cheaper. Unless the environment provides other means of input,
communication with that display will be one-way only.

• Social restrictions: If a large display is mounted in a public space, it is not unlikely that it can
be seen by multiple people. This prohibits privacy, so any interaction that involves private data

∗Telecooperation Group, Darmstadt University of Technology, Germany, email: elmar@tk.informatik.tu-darmstadt.de
†Telecooperation Group, Darmstadt University of Technology, Germany, email: max@informatik.tu-darmstadt.de

153



cannot be performed on the display. This restriction also applies to public versions of other
modalities. A loudspeaker for voice interaction is at least as non-private as a public display, and
even more disrupting for people other than the user.

If the user has a personal mobile device, she can resort to using that device in all those cases. How-
ever, this means that little remains of the convenience that embedded input and output devices in the
environment promised.

2. Federated Devices

Our proposal is simply to use multiple devices together. Instead of forcing the user to choose between
using either the infrastructure or her personal device, the two should cooperate. If the user can use
two (or more) devices together, each of the cooperating devices can specialize on rendering that aspect
of the user interface which it is best suited for. Consider the three points from the last section:

• Spatial restrictions: A personal mobile device is usually carried within the user’s reach. Using
the mobile device allows to interact with the public screen from anywhere as long as it is visible.

• Device restrictions: When a display has no means of input, the mobile device can substitute.
While input on many mobile devices is far from perfect, it is better than no means of input at
all.

• Social restrictions: If only some parts of a user interface handle privacy sensitive data, the pri-
vate device can display this part, while the public display handles the non-sensitive remainder.

Another way to look at it is from a mobile user’s viewpoint. Interaction with mobile devices is
constrained by the small screen size. Associating a public display gives the user interface a lot of
space into which it can “overflow”. A user who is roaming within some augmented environment can
move about freely while using her personal device. When she has need for a larger display, she simply
associates it temporarily from the environment. When she is done, she moves on, again interacting
solely through the handheld.

We refer to a set of devices, which cooperatively and concurrently renders a user interface, as a
federation. We call the user interface rendered on a federation a federated user interface. The obvious
term “multi-device user interface” was not used, as it is already used elsewhere in a different sense
(see below).

3. The Multi-Device Design Space

In order to analyze related work as well as our own project, we have developed a classification for
multi-device applications. Figure 1 shows a simplified version of it.

We distinguish between sequential and concurrent use of multiple devices. Sequential use means that
a user is roaming from one device to another. Concurrent use means interacting with multiple devices
at the same time. Concurrent use does not rule out sequential use. Some systems might allow roaming
from one federation to another.

154



Device

Independent

Roaming

Federated

User

Interface

Teleporting Multimon

Sequential Concurrent

M
u
ltip

le
S

in
g
le

Use of Devices

S
u

p
p

o
rte

d
 D

e
v

ic
e

 T
y

p
e

s

Figure 1. The Multi-Device Design Space

The other distinction is whether a system supports multiple types or only one type of device. For
example, Teleporting [3] allows users to roam from device to device, but only supports desktop com-
puters. It is not possible to teleport from a desktop to a voice-based device. Hence we classify
Teleporting as sequential use of a single device type. If a system allows roaming from one type of de-
vice to a different one, then it is classified as device independent roaming (sequential use of multiple
device types).

Concurrent use of a single device type means that the user is interacting through an array of one type
of device. “Multimon” projects, which arrange multiple displays to render a single large desktop, fall
in that category. Such projects usually attempt to hide the fact that they are interacting with multiple
devices from the user, and are therefore not of much interest to us.

Concurrent use of multiple device types means that the user interacts with a heterogeneous set of
devices, such as a handheld and a wall mounted display. Exploiting such heterogeneous device sets
is our primary focus of work.

4. Runtime Environment

We have implemented a runtime environment that allows us to coordinate device federations (cf. sec-
tion 7.). It implements a model-view-controller pattern, in which view and controller are distributed
to a set of devices, while the model resides on a server. If an input happens, the device sends an event
to the server, which updates its state, and notifies all other devices of the update.

Our implementation is loosely oriented on a web metaphor. One could consider our client-server
implementation to be a distributed web browser, which maintains its state on a server, while it can
render a window on a number of remote devices.

As normal and large screen client we use a web browser. Communication with the server and interac-
tivity is handled by an embedded Java applet. The other devices for which we implemented clients are
PDAs (Java), cell phones (J2ME), and voice recognition. The implementation is explained in more
detail in [5].

155



Devices can be associated and dissociated at runtime. We have connected it to two different sensor
systems (infrared proximity sensing; absolute location sensing based on infrared beacons and infrared
stereo vision), and thereby support roaming as well. The user can move about, the system automati-
cally detects which devices are near, and uses them to interact with her.

5. Usability of Federated User Interfaces

Currently there are only a small number of implementations of federated user interfaces (see section
9.), and most of these have not evaluated usability through user studies. Therefore little is known
about the usability of federated user interfaces.

Designing for federations is difficult, as the design space is much greater than for a desktop computer.
The designer has multiple channels of the same modality, but with different characteristics, at her
disposal. For each task or even widget she has to decide whether it will be offered on the handheld,
on the large screen, or on both.

We have a two pronged approach to developing something like an interaction pattern language (an
ordered library of working design ideas) for federated user interfaces. On the one hand, we are
evaluating the few existing projects that use federated devices. We want to see whether these designs
might be used as a starting point for a pattern language. On the other hand, we are designing some
applications of our own, in order to subject them to user studies. We try to pick designs that are not
already covered by existing projects, in order to fill the blank spots in our library.

Strictly speaking these are not (yet) real interaction patterns, as they mostly were designed, rather
than extracted from the experience of proven successful federated user interfaces. Nonetheless the
format of an interaction pattern language proved to be a good way of expressing them. Examples of
our design ideas include patterns for remote control, for privacy, for using either the mobile or the
fixed device as “cheat sheet” that explains the use of the interface on the other device, and others.

6. Authoring for Federated Devices

But how realistic is it to assume that federated user interfaces will be designed manually? The sce-
narios we explore are scenarios of frequently changing context: the user moves about, roams from
one set of devices to a different one, and so on. This means that a human designer would have to
anticipate and make provision for any set of devices that the user might employ to interact.

This problem already exists today, when one tries to author an application that works both on desktop
computers and a variety of mobile devices. The solution to this is called device independent author-
ing, multi-device authoring, or single authoring: the designer specifies the user interface in a device
independent manner. This description is then automatically adapted at runtime to the terminal device.

As the set of feasible device combinations is even more diverse than the set of mobile devices, the
authoring problem is even worse for federated user interfaces. Therefore we have worked on a single
authoring scheme, which picks patterns from our library of design ideas, according to the currently
available devices and the interface description, and generates a federated user interface on the fly.

156



7. System Walk-through

This section will demonstrate how authoring, rendering and use of a federated are done using our
system. Figure 2 shows an overview of the participating components. We have a working prototype
of this system (cf. section 4.).

The application in this example is a presentation software for displaying (not editing) presentation
slides. It has three main components. The first component is the presentation area, which displays the
slides. The second component is a note area, which allows the presenter to make and view annotations
for each slide. The third component is the navigation to switch between slides.

The author of the application writes a single XML document describing the user interface. She marks
the three components using grouping tags around the contained widgets. She also marks the note area
as private, since it may contain notes not intended or suitable for the audience. The presentation area
is marked as not requiring input, while the navigation is marked as requiring input. The system can
also derive this from the contained widgets. However, the author can manually mark this to override
automatic behavior.

When a user starts this application from her mobile device, it connects to a server called dialog
manager (DM). The DM initiates the transcoding process so that it can send a concrete user interface
to the device. Since there is only one device, there is not much choice during transcoding. Each widget
is rendered exactly once on the mobile device. Therefore the DM simply transcodes the user interface
description to the format required by the mobile device. The device displays the user interface so that
the user can interact, albeit constrained by device limits.

Now the user walks up to a public display to give her presentation. A location system tracks her, and
emits an event as she enters the vicinity of the display. When the user started the application, the DM
subscribed to such events. Now that an event tells it that the user’s device context has changed, it
starts the transcoding anew. This time it can use two devices: the public display and the handheld.

The first step of transcoding is choosing appropriate patterns for each device in this federation. Based
on the characteristics of this particular UI, the transcoder decides to use a remote control pattern.
Then it fragments the user interface description according to the pattern.

The handheld is assigned the control part of the remote control pattern. This means that the transcod-
ing for the handheld registers a high preference for the input-intensive navigation, and a low pref-
erence for the other parts of the UI. The public display registers a high preference for rendering the
presentation area and a lower preference for the navigation. The device characteristics of the public
display do not match the privacy requirements of the note area, and the transcoder registers the public
display’s inability to render this part.

Finally, the transcoder resolves these preferences. The presentation part is assigned to the public
display, while the navigation part is assigned to the handheld. The note area is also assigned to the
handheld, because the transcoder ensures that each widget is rendered at least once, and the handheld
is the only private device available.

After transcoding them to the device specific formats, the two user interface fragments are pushed
to the devices. While the user interacts, the clients on the two devices are synchronized through the
DM. When the user makes an input on one device, an event is sent to the DM, which updates all other

157



PDA

Desktop

Cell Phone

Speech

Client

Sensors
Context

Stack

user

interacts

Dialog

Manager

detect which devices are 

available to the user

Device

Independent

UI Markup

transcoded device

specific UI

maintain app. 

state across 

devices

Figure 2. Architecture sketch

clients. For example, if the user presses the “next slide” button on the handheld, the application logic
(running on the DM) receives this event and updates the presentation by switching to the next slide.
Then the DM sends this update to the public display.

8. Future Work

Currently we are working on a user study to evaluate different proposed patterns for federated devices.
With the results of this study we will try to increase the quality of our transcoder. We hope that the
experiences from the study and our patterns will independently of our implementation also help other
designers of federated user interfaces.

Our study will measure both performance (speed and error rates) and user acceptance of federated
user interfaces. The first test case is a route planning software, of which three different version were
developed. A pure handheld and a pure large screen version of the application were developed for
comparison with the federated application. The second test case will try out privacy related patterns;
a third test case has not yet been finalized.

9. Related Work

Our work was inspired by various projects about roaming, such as Teleporting [3]. To our knowledge,
none of these deal with the concurrent use of multiple devices.

A number of applications using personal mobile devices together with larger fixed devices have been
implemented as research prototypes. Examples are Pebbles [10] and Rekimoto’s work on combining
handhelds and whiteboards [13]. These projects have inspired us. However, these projects imple-
mented a small number of applications for one fixed set of devices rather than arbitrary federations,
and do not support roaming.

Also strongly related are a number of projects such as the iRoom [8]. These projects have built
interactive office spaces with embedded large screens. Fox et al. have explored how handheld devices
can be integrated into the iRoom. Special web pages can be prepared, which contain links that open

158



the target of the link on another screen as opposed to the same screen. If such a web page is operated
from a handheld device, it allows some form of remote control of other screens.

A project very similar in scope to ours is “Opportunistic Annexing” [12]. Their motivations match
ours closely. The term Opportunistic Annexing refers to the process of associating public devices
from the environment to augment a handheld user interface. We are currently not aware of actual
implementations of the concept.

The concept of a web browser that interacts through multiple devices concurrently has been imple-
mented before (e.g. [9]). However, to our knowledge none of these projects has tackled the authoring
problem. Authoring web interfaces for these projects usually entails authoring a separate web page
for each involved devices. Also there is no support for roaming.

There are projects which use mobile devices as input device replacements. For example, “Bring Your
Own Device” uses a camera phone as a mouse [2]. The output capability of the mobile device is not
used. This means that it is not possible to exchange private information with a public display.

A rather large body of work exists for the topic of multi-device authoring. The most well known
example of a single authoring language is UIML [1]. However, most of the research on multi-device
authoring has focused on rendering on desktop computers and adapting the same interface downwards
to mobile devices with their limited resources. We are not aware of any work that deals with adapting
upwards to interaction resource rich target devices, such as a federation with multiple screens.

Some single authoring schemes aim to create some kind of universal remote control (e.g. [11]). The
term “remote control” is ambiguous. It can either mean “control your home appliances from work” or
“control your TV while you are watching it”. The former requires the interface to control and provide
feedback about all aspects of the controlled device, because it is not in sight of the user. The latter
means that neither the control nor controlled device need to be useable stand-alone, as they can rely
on being used together. Most universal remote control projects focus on the former, while for us the
latter case is normal, for example when a PDA “remote controls” an associated screen.

An interesting project for the combined use of multiple displays is Gloss [7]. It allows users to recon-
figure the positions of different kinds of displays, including PDAs, at runtime. The system is context
aware with respect to their positions and orientations, and assembles them to act as one working
space. However, at the current published state it does not seem to exploit different characteristics of
different devices, but rather uses a disparate set of devices to display one desktop-like surface.

Using patterns for interaction design has been proposed before (e.g. [4]). However, such patterns
are usually applicable only in the single device case. Adapting such patterns to federated devices
is left to reader, if possible at all. We are not aware of a specialized pattern language for federated
devices, although Chung et al. have included a pattern describing Rekimoto’s “Pick and Drop” in their
collection of pre-patterns for ubiquitous computing [6].

References

[1] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M. Williams, and
Jonathan E. Shuster. UIML: an appliance-independent XML user interface language. Com-
puter Networks (Amsterdam, Netherlands: 1999), 31(11–16):1695–1708, May 1999.

159



[2] Rafael Ballagas, Michael Rohs, Jennifer G. Sheridan, and Jan Borchers. BYOD: Bring Your
Own Device. In Proceedings of the Workshop on Ubiquitous Display Environments, Ubicomp
2004, 2004.

[3] Frazer Bennett, T. Richardson, and Andy Harter. Teleporting - Making Applications Mobile. In
Proceedings of 1994 Workshop on Mobile Computing Systems and Applications, 1994.

[4] Jan Borchers. A Pattern Approach to Interaction Design. John Wiley & Sons Ltd, March 2001.

[5] Elmar Braun, Gerhard Austaller, Jussi Kangasharju, and Max Mühlhäuser. Accessing Web
Applications with Multiple Context-Aware Devices. In Maristella Matera and Sara Comai,
editors, Engineering Advanced Web Applications. Rinton Press, 2004.

[6] Eric S. Chung, Jason I. Hong, James Lin, Madhu K. Prabaker, James A. Landay, and Alan L.
Liu. Development and evaluation of emerging design patterns for ubiquitous computing. In
David Benyon, Paul Moody, Dan Gruen, and Irene McAra-McWilliam, editors, Conference on
Designing Interactive Systems, pages 233–242. ACM, 2004.

[7] Joëlle Coutaz, Christophe Lachenal, and Sophie Dupuy-Chessa. Ontology for multi-surface
interaction. In Proceedings of Interact 2003, 2003.

[8] Armando Fox, Brad Johanson, Pat Hanrahan, and Terry Winograd. Integrating information
appliances into an interactive workspace. IEEE Computer Graphics and Applications, 20(3):54–
65, May/June 2000.

[9] Jan Kleindienst, Ladislav Seredi, Pekka Kapanen, and Janne Bergman. Loosely-coupled ap-
proach towards multi-modal browsing. Universal Access in the Information Society, 2(2):173–
188, June 2003.

[10] Brad A. Myers. Using Handhelds and PCs Together. Commun. ACM, 44(11):34–41, 2001.

[11] Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes, Thomas K. Harris, Rosenfeld
Rosenfeld, and Mathilde Pignol. Generating remote control interfaces for complex appliances.
In Proceedings of the ACM Symposium on User Interface Software and Technology, Papers:
infrastructure for ubicomp, pages 161–170, 2002.

[12] Jeffrey S. Pierce, Heather Mahaney, and Gregory Abowd. Opportunistic annexing for handheld
devices: Opportunities and challenges. Technical report, Georgia Tech, 2003.

[13] Jun Rekimoto. A Multiple Device Approach for Supporting Whiteboard-Based Interactions.
In Proceedings of ACM CHI 98 Conference on Human Factors in Computing Systems, pages
344–351, 1998.

160




