Software Architecture for Self-organizable Universal Boards

Ryo Ohsawd, Naohiko Kohtaké, Kazunori Takashit and Hideyuki Tokuda

Graduate School of Media and Governance, Keio University
5322 Endo, Fujisawa, Kanagawa, 252 8520,Japan
{ryo, nao, kaz, hxt }@ht.sfc.keio.ac.jp
http://www.ht.sfc.keio.ac.jp/

Abstract. Recently, the technology of the pervasive computing environment is developing rapidly be-
cause of the advancement in computer science. In order to realize such environment, the user must implant
multiple computer devices and sensors. However, this is not easy because it is difficult for users who are
unfamiliar with computing technology, to use them indivisually. We have developed a board type smart
material called "u-Texture”, which has a built-in computer and sensors. u-Texture can connected with
other u-Textures to form various shapes, and can recognize its entire structure. At the same time, the u-
Texture can distinguish the possible services it can execute and display to the user. This paper describes
the software architecture to achieve the self-organizable universal board.

1 Introduction

In pervasive computing environment, computers, sensors, devices, and networks are embedded in or attached
to non-smart objects, and connected to create context-aware pervasive services. Recently, many non-smart
objects are converted into smart objects by various approaches, and a large number of smart home, smart
office, smart furniture, etc., are realized and to support human activities. However, it is difficult for users who
are unfamiliar with computing technology, especially pervasive computing technology, to create and maintain
pervasive computing environments without experts. Moreover, most of these environments are handmade by
users and the cost and time for building such an environment is a barrier to the development of appropriate
pervasive services. To solve this problem, Previous research for realizing pervasive computing environments,
with objects such as tables, shelves, and drawers in homes and offices are not originally smart, but namely
most of them are enhanced by attaching computers, sensors, and devices [2] [4].

Our approach aims to enlarge functions by making components, such as boards, legs, and props of ta-
bles and shelves, smart in advance. As users assemble objects with these smart components, which are made
beforehand to have functions to recognize the surroundings and to realize the pervasive computing envi-
ronments, these components alter their functions autonomously according to the shapes of how they are
assembled, and then, objects work as smart objects. In the process of developing in the prototype of the first
smart components, we focused on théoard shapé , which is the basic to form most furniture such as
tables and shelves. Then, We have developed a board type smart material called "u-Texture” to realize the
pervasive computing environment easily by assembling them physically. [1]

2 u-Texture : Self-Organizable Universal Boards

This section describes the overview of u-Texture.

2.1 Basic Functions

The prototype of u-Texture is 320 mm square, 48 mm thick, and 4300 g, approximately the size and shape of
a pizza box. u-Texture consists of the following devices with basic computer devices such as processor and
hard disk drive. Additionally, u-Texture has serial port interfaces on its 4 sides to confirm if it is connected

or not, and also accelerometers to find its inclination. There are wired LAN interfaces on each four sides to
exchange data between adjacent u-Textures. the classification table of a built-in device according to the usage
is shown in Tablel.

Table 1.Built-in devices

[Usage T Device]
Adjacent Detection [[Infra-red Communication Device X 4
Connected DetectiofRS-232C Serial Interface x 4

Data Communicatiofiil0OOBASE-TX/10BASE-T Ethernet LAN x4
IEEE 802.11b Wireless LAN
inclination Detection|Acceleration sensor

Input Touch display]
RF Reader for ISO15693
Output SXGA+14.1 type thin film transistor color LA

Speakerl RF Writer for ISO15693

2.2 Assembly Example
Fig.1 shows the appearance of u-Texture and examples of several smart objects assembled with u-Textures.

o

u-Texture Table Type Wall Type Shelf Type

Fig. 1. u-Texture connects with other ones horizontally and vertically, and collaborates with each other by exchanging
location and inclination information, commands, and data.

Table Type can exchange data of each u-Texture onto its screen. It can be created by connecting u-Textures
and setting it horizontally. When several u-Textures are connected, an arrow will indicate the direction of the
other connected u-Textureon screens of each u-Texture. The data will be copied to the u-Texture connected
to the direction of the arrow by dragging it to the arrow.

Wall Type can display data from a u-Texture widely in cooperation with other connected u-Textures. It can
be created by connecting u-Textures and setting it vertically. In the case of connecting u-Textures equally in
length and breadth of 2 x 2 or 3 x 3, a magnified picture of one designated u-Texture will be displayed.

Shelf Type is a shelf that recognizes what is put on top of itself. It can be created by assembling u-Textures
vertically and horizontally. Putting objects with RF-tag on the shelf, it can recognize the object and records
it as data. With the action, a user can confirm its detailed information by output from the display of the shelf
and also search via network where the object has been put on.

2.3 Activate Sequence
The basic three actions of u-Texture as a smart object are given as follows.

Recognition . As a user assembles u-Textures, the assembled u-Textures share information such as connec-
tivity with other u-Texture, directions of connection, IDs of adjoining u-Textures, and inclinations of them-
selves. With this information, each u-Texture recognizes its assembled shape and location on the assembled
shape.

Adaptation . Available applications corresponding to the recognized smart object will be selected automati-
cally among different applications preinstalled in each u-Texture. A’usamput determines one application
when there are several choices.

Cooperation . Once which application is to be used is determined, each u-Texture behaves autonomously
and works together according to the smart object shape, and each location and inclination.

3 Software Architecture for u-Texture

This section describes the software architecture for u-Texture to work as smart objects.

3.1 Overview

First of all, the overview of software architecture is described. Fig.2 shows the appearance when the shelf
type smart object is actually assembled.

Function Requirement The function requirement for reassembled u-Textures to offer the service to the user
is described as follows.

Recognition . The algorithm which decides the structure based on shared information is necessary so that
individual u-Texture may process it according to the self-position of the entire structure.

Adaptation . The executable application is different according to the entire structure. For example, In the
case of the shelf type, the multi display application is unusable. Therefore, a u-Texture should recognize
whether a apllications can be used according to the entire structure.

Cooperation . It is necessary to change the model of cooperation according to the kind of the application.

GUlI displayed in the u- Assembly of u-Texture by
Texture that user build a user
in at the end.

The user builds in u-Textures.
GUI on u-Texture displays the RininciEcaN]
menu list of applications that Picture Viewer
can be start and entire structure
image of u-Textures.

Video Player

u-Textures are self-recognized,
and change the menu list and - -
. Picture Viewer
the structure image. -
. Video Player
(Recognition) Aware Shelf

Remembrance Shelf

Drawing Board

| Aware sheif

If the user clicks an application

menu, the corresponding

application starts. In this case,

Aware Shelf was started.

(Adaptation) -

Aware Shelf

If the user places objects, the
information of the objects can
be displayed by sharing
information between u-Textures
(Cooperation)

Fig. 2. Flow in realization of shelf type smart object by assebmling u-Textures from top; A user assembles u-Textures,
The u-Textures inidicate application candidates by self-organization, A user selects desired application, The u-Textures
run the selected application cooperatively

user

7. Avai J_8. Start Command
Appli :mn ' * 10. Initiation

List

Application

‘ 5. Application 1 9. Start
Description Command

Application Launcher Module

f 4. Structure Data

Structure Recognition Module

1 3. Connection Data of All u-Textures 2. ((dnnection Data

Event Sharing Module _I

f 1. Sensor Data Other u-Textures

Sensor

u-Texture

Fig. 3. Activation Data Flow

Activation Data Flow The activation data flow is showed in Fig.3. Details are described as follows.

1

2
3
4.
5. The application launcher module receives the application descriptions from all applications. An appli-

© oo~

10.

. Sensors (ex. an accelaration sensor, serial interfaces, etc) send sensing data regularly to the event sharing

module.

. U-Textures share the connection data that corresponds data of the acceleration sensor and serial interface.
. The connection data of all connected u-Textures is sent to the structure recognition module. Then struc-

ture recognition module calculate the entire structure.
Structure data is sent to the application launcher module.

cation descriptions describes the basic information of the application and the condition by which the
application can start. The application launcher distinguish whether the application can start or not in
present entire structure.

. The application launcher module share the list of applications that can start among combined u-Textures.

When sets of the application list A, B and C, u-Texture consider thBAC as the application that can
be started.

. The application launcher module presents the user with the available application list.
. The user send the application start command.
. When the application launcher module receive the start command from the user, it sends the command

to the corresponding application.

The application sends the initiation command to other connected u-Textures. When a u-Texture has not
been installed the application, the u-Texture copy the application from another connected u-Texture and
install it.

3.2 Recognition

The recognition sequence is divided into the event sharing and the structure calculation.

Event Sharing To understand the entire structure, assembled u-Texture should share the change event of
the connection and the inclination with all connected u-Textures. First of all, a u-Texture acquires its incli-
nation with an acceleration sensor and information on the u-Texture directly connected by using the serial
interface. However, information on the u-Texture connected through other u-Texture is also necessary so that
individual u-Texture may understand the entire structure. To solve this problem, all u-Textures broadcast to
own information by using Ethernet LAN. Fig.4 shows the example of the shelf type smart object assembled
by u-Textures and the data example thdffexture Abroadcasts.

<utexture> A
<externalization class="jp.ac.keio.utexture.NextEvent*
nodeid="192.168.1.7">

<member name="ownEdge" type="string" value="DOWN"/>
<member name="ownAngle" type="string" value="A_DOWN"/>

' A (192- 168.1 -7) <member name="nextIDs" type="string[]">

<element>192.168.1.9</element>

<element>192.168.1.8</element>

<element></element>

B (192 168.1. 8) </member>

<member name="nextEdges" type="string[]">
<element>UP</element>
<element>UP</element> | feeees @
<element></element>

D (192 | D (192.168.1.10) </member>

<member name="nextAngles" type="string[]">

<element>A_DOWN</element>
<element>A_BACK</element>
A <element></element>

L </member>

<member name="ownID" type="string" value="192.168.1.7"/> }

C (192.168.1. 9

</externalization>
</utexture>)

Fig. 4. Example of the data that broadcasted frosiiexture A

The explanation of data example shown in Fig.4 is described as follows.

1. Information oru-Texture A

ownlID is uniquely identified by structure of the entire u-Texture and is allocated IP when cable LAN is
connected by using Auto-IP function.

ownEdge is the edge connected with another u-Texture. (RIGHT, LEFT, DOWN, UP)

ownAngle is shows the inclination to surface of the earth. This value shows respect under surface of
the earth and horizontal u-Texture. For instance, in the caseRANT The display of u-Texture
is the horizontal in the lower side with surface of the earth. ERONT, A BACK, A_LEFT, A_
RIGHT, A_UP, A. DOWN)

2. Information on the u-Texture connected directly witiTexture A Three element exists because three
u-Textures can be connected in the maximum compared with one edge.

nexctIDs are the IDs of the u-Texture connected directly witfiexture A
nextEdges are the edges connected witHTexture A
nextAngles show the inclinations to surface of the earth.

Structure Calculation The algorithm that can uniquely decide the structure based on shared information is
necessary so that individual u-Texture may process it according to the self-position of the entire structure.
u-Texture shares ID, the connection information, and the inclination among combined u-Textures, and re-
spectively calculates the entire structure. An entire of u-Texture structure is expressed by coordinates and
the inclinations based on the lattice point shown in fig.5. The inclinatiorirbat side andbottomof three

per one lattice point coordinates. Fig.6 shows example of structure inforamation in the case of the shelf type
smart object.

side front

0,12 (11.2) 21.2)

(102) 202
of.1) (rin 21.1) /
3 (

X

(0,0,2)

bottom

©0.00) 1.00) 2.00) X , y’ , X)

Fig. 5. u-Texture’s Coordiante and inclination
Za

A{(0, 1, 0), side}

B {(0, 1, 0), bottom}
(0,1,0) € — -

(0,0,0)

Fig. 6. Example of Structure Inforamation in the case of the shelf type smart object

3.3 Adaptation

The executable application is different according to the entire structure. For example, In the case of shelf type,
the multi display application is unusable. Therefore, a u-Texture should recognize whether a applications can
be used according to the entire structure. Moreover, the application installation function is also necessary as
software can be easily built into a u-Texture.

Start Condition An individual application has the attribute, and the application developer describe in what
structure the application can be started in the attribute. Fig.7 shows the example of describing the application
attribute.

application are the IDs of the u-Texture connected directly witfiexture A
name is the application name displayed in user interface.
id is the ID uniquely identified in the world.
component-setdescribes basic information on the application.
component element describes inforamation on a module of a applicatiassattribute describes the
path name of the class that initializes the application.
available-condition element describes the condition that application can be used. application attribute can
setavailable-conditionand uavailable-conditionOnly when both conditions are filled, the application
becomes possible the start. Details of the attribute are described in the table2.
uavailable-condition element describes the condition that applicatiomcabe used.

<application name="AwareShelf" id="4631205780235174">
<component-set>)
<component class="jp.ac.keio.utexture.AwareShelf" />
</component-set>
<available-condition>
<condition object=">1" inclination="bottom" />
</available-condition>
</application>

Fig. 7. Application Attribute

Table 2. Attribute of Available-conditiorandUavailable-condition Elemetnt

[Attribute] Value] Explanation ofavailable-condition(disable-condition)

object all [AIlu-Textures exists or is the following state. (It is not.)

x« > |U-Texiures that are more thanexist or are the following state. (Itis not.)

x = |z u-Textures exist or are the following state. (Itis not.)

> « |Less thanc u-Textures exists or is the following state. (Itis not.)

inclination]| side [The u-Textures of the number specified by valuelgectareside(defined in section 3.2).
front [The u-Textures of the number specified by valuelgjectarefront (defined in section 3.2).

bottom The u-Textures of the number specified by valuelgectarebottom(defined in section 3.2).

Application Installation The application installation function is also necessary so software can be easily
built into a u-Texture. There are roughly separately two techniques for installing the application in a u-
Texture.

The First is a technique for download and installing the application from the application offer server by
way of the network. (ex. Java Web Start Technology). u-Texture provides Ul for the installation of a new
application and installs the application according to the user’s input. When the user download the application
a well-known server to tell the location of the server with the application is necessary. It is like the search
engine or the portal site when the user searches the website. After connecting the well-known server, u-
Texture sends the request of the application download to the server that offers the application.

The second is a technique for copying the application from another u-Texture connected directly. First
of all, Assembled uTextrures exchanges application information that can be started in the entire structure
mutually each other. When sets of the applications of assembled u-Texture A, B andACar€’, U-

Texture offers the uset U B U C' as an application that can be started. When the user starts the application,
u-Texture in which the application is not installed copies the application from either of connected u-Texture.

3.4 Cooperation

The model of cooperation must change according to the kind of the application. There are two models which
operate cooperatively among u-Textures. The master-slave model is the model that all u-Textures refer to the

data that exists in a u- Texture. The distributed autonomous model is the model that doesn't show the data
source in a u-Texture and autonomous operates each u-Texture. In the case of Aware Shelf application that is

showed Fig2, The distributed autonomous model is used to share the information of objects.

Master-Slave Model is the model that all u-Textures refer the data that a u-Texture has. The u-Texture
that has data is assumed to be the master, and u-Texture that refers to data is assumed to be the slave. The
application of the slaves ends when u-Texture of the master is removed or ended. Process of slaves are later
than their master, because slaves does the processing after receiving data from their master. As the example
of the application that uses this model, the application to which one u-Texture applies the Web camera, and
the image is displayed by the expansion with two or more u-Texture exists.

Distributed Autonomous Maodel is the model that does not show the data source in a u-Texture and au-
tonomous operates each u-Texture. The application on all u-Texture does not an end event if a u-Texture is

removed from the group. It is not like the master-slave model. Moreover, the delay problem of the master-
slave model does not occur. However, synchronous processing of the application becomes complex, the
possibility that bug is generated is high in distributed autonomous model. As the example of the application
that uses this model, the multi display application that connects with video streaming server displays image
corresponding to the position of u-Texture exists.

4 Discussions

In this section, the consideration concerning the software architecture implemented this time and the view in
the future are described.

4.1 Recognition

Event Sharing . The broadcast that each u-Texture uses to transmit all events to every u-Texture is used to
recongnize the entire structure. This event sharing mechanism can be used for the sensor event. However,
when the amount of the event increase, the overhead grows. It is necessary to implement the look-up mech-
anism that searches for which offers the event by the broadcast and to transmitting information only to the
registered u-Texture.

Structure Calculation . Because the structure can be recognized with an acceleration sensor that calculated
the inclination from the ground level. We cannot express whether the u-Texture is facing forward or backward
with our current implementation. To solve this problem, it is necessary to build the azimuth sensor into the
u-Texture or build the computer into the joint that combined between u-Textures.

4.2 Adaptation

Available applications corresponding to the recognized smart object will be selected automatically among
different applications pre-installed in each u-Texture. A user’s input determines which application is to be
used when there are several choices. However, it is a hussle for the user to input their choice every time.
If a u-Texture can recognize the user, the u-Texture can start the most appropriate application in a present
structure based on the history of the user.

4.3 Cooperation

In our current implementation of u-Texture cooperation heavily depends on each application. We therefore
need a more generic cooperation model. This would be useful when a heterogeneous device were to cooperate
with another u-Texture. For example, transmitting image from a digital camera to wall type smart object
requires a large amount of computational power and network bandwidth. We could have the camera send
its image to a u-Texture and have it duplicated to other u-Textures, instead of sending its image to every
u-Texture.

5 Related Works

As a relative work of board type smart object, ConnecTables [3], can be used as a table for the collaborative
activity like u-Texture. A ConnecTable can recognize other ConnecTables and can cooperatively work. Con-
necTable consists of BEACH, which is the software architecture of ConnecTables. It is based on the server-
client model, and requires access to a server in order to operate ConnecTables cooperatively. u-Texture have
Ethernet LAN Interface in four directions and the framework that supports the serverless cooperation.

6 Conclusion

We have developed a board type smart material called "u-Texture”. This paper described the software archi-
tecture to offer users the pervasive service.

7 Acknowledgement

This research has been conducted as part of Ubila Project supported by Ministry of Internal Affairs and
Communications, Japan.

References

1. N. Kohtake, T. Yonezawa, R. Ohsawa, Y. Matsukura, M. lwai, K. Takashio, and H. Tokuda. Creating pervasive
services with self-organizable universal boardsTHird International Conference on Pervasive Computing (PERVA-
SIVE2005), Video To be appearaday 2005.

2. N.A. Streitz, J. Geibler, T. Holmer, S. Konomi, C. Muller-Tomfelde, W. Reischl, P. Rexroth, P. Seitz, and R. Steinmetz.
i-LAND: an interactive 'Iandscape for creativity and innovation.AHI '99: Proceedings of the SIGCHI conference

on Human factors in computing systemages 120-127. ACM Press, 1999.

3. P. Tandler, T. Prante, C. Muller-Tomfelde, N. Streitz, and R. Steinmetz. ConnecTables: Dynamic Coupling of Displays
for the Flexible Creation of Shared Workspaces. UIST'01.

4. H. Tokuda, K. Takashio, J. Nakazawa, K. Matsumiya, M. Ito, and M. Saito. Sf2: Smart furniture for creating
ubiquitous applications.|EEE Proceedings of International Workshop on Cyberspace Technologies and Societies
(IWCTS2004)pages 423-429, 1 2004.

