
Adaptation Support for Stateful Components in PCOM

Marcus Handte1, Gregor Schiele, Stephan Urbanski, Christian Becker

Institute of Parallel and Distributed Systems
Universität Stuttgart, Germany

firstname.lastname@informatik.uni-stuttgart.de

Abstract. In ever-changing environments as they are envisioned in Pervasive
Computing, applications have to adapt to changes in their execution environ-
ment. The automated composition of applications from components that are
distributed across different devices is an adaptation technique that has been
proposed by a number of researchers. While many approaches support the dy-
namic reselection of stateless components in order to adapt running applica-
tions, they often fall short of providing programmable solutions to automati-
cally reselect components that carry application-specific state. In this paper, we
discuss the requirements towards this support and we propose a framework that
enables the (semi-)automatic reselection of PCOM components.

1 Introduction

Pervasive Computing envisions seamless support for complex user tasks by lever-
aging the capabilities of the environment. Over time the capabilities change due to
user mobility or device failures. As a result, applications have to adapt to the capabili-
ties of their ever-changing execution environment. To support developers in creating
such adaptive applications, a number of researchers are focusing on the development
of software infrastructures that automate the task of adaptation. One possible ap-
proach is the automated composition of applications from components that are dis-
tributed across different devices. Infrastructures such as PCOM [1] and P2PComp [4]
can effectively determine a suitable composition at application startup and support
adaptation by recomposing applications at runtime. However, these approaches are
typically restricted to reselecting stateless components and do not provide special
support for stateful components. In this paper, we discuss the requirements towards an
extended adaptation support that facilitates the development of applications with
stateful components. Based on these requirements, we present a framework that en-
ables the automated recomposition of applications containing such components.

The remainder of this paper is structured as follows. The next section presents the
underlying system model. Thereafter, we discuss the requirements towards adaptation
support for stateful components. Section 4 outlines the framework that we have de-
veloped to enable such adaptations. Section 5 describes the framework integration in

1 This work is funded by DFG Priority Programme 1140 – Middleware for Self-organizing

Infrastructures in Networked Mobile Systems.

2 Marcus Handte , Gregor Schiele, Stephan Urbanski, Christian Becker

PCOM and Section 6 provides a short evaluation. Finally, Section 7 concludes the
paper.

2 System Model

Our work focuses on peer-based environments, where mobile devices cooperate
spontaneously as equal peers without the need of any external infrastructure support.
Applications are assembled of software components that are provided by devices in
the vicinity. Due to mobility, the availability of devices and their components is con-
tinuously fluctuating. New devices can arrive at any time, existing ones can be lost
unpredictably and possibly permanently. To dynamically compose an application out
of available components, we assume a suitable infrastructure such as RCSM [12],
P2PComp [4] or PCOM [1]. For the sake of brevity, the discussion in this paper fo-
cuses mainly on our component system PCOM. However, the presented approach can
be adjusted to other systems as well. In the following, we briefly sketch the relevant
concepts of PCOM. A detailed description can be found in [1].

In PCOM, each device executes a component container, which manages all local
components. Components are atomic with respect to distribution. The offered and
required functionality of a component is described within a so-called contract. The
attributes contained in contracts can be dynamically manipulated at runtime. PCOM’s
application model guarantees that each component instance is always used by at most
one other component instance. Adaptation is supported by enabling instances to
switch their used component instances at runtime. Both, container and components
use our object-oriented middleware BASE [2] as communication platform. Therefore,
all communication is performed through local proxy objects.

3 Requirements

From the presented system model, we can derive the following requirements to-
wards adaptation support for applications with stateful components:

Decentralized operation: Peer-based systems cannot rely on the permanent pres-
ence of devices. Thus, the mechanisms used to support the adaptation of stateful com-
ponents should not rely on the permanent availability of a central coordinating device.
Instead, the mechanisms must support peer-based coordination.

Proactive state maintenance: While some communication technologies might be
used to approximate the relative mobility of devices, e.g. by measuring the signal-to-
noise ratio, a precise and reliable prediction of future disconnections is hard to
achieve without additional capabilities, e.g., positioning systems, maps, movement
profiles, etc. In order to be suitable for arbitrary environments, the adaptation support
must be able to recover from unforeseeable disconnections.

Efficiency and minimalism: Ideally, adaptation support for stateful components
should not introduce a performance overhead on component usage. Additionally, to
support a broad range of devices it should be minimal regarding its resource require-
ments.

Adaptation Support for Stateful Components in PCOM 3

Tailorable automation: With respect to usability, it would be desirable to offer
completely automated state maintenance. However, this often conflicts with require-
ments like efficiency and minimalism. Thus, a framework should be able to provide
various degrees of automation that can be controlled by the component developer.
Ideally, a component developer should be able to tune the automation of distinct tasks
in order to achieve the best performance. Fully automation – despite its possible costs
– should be offered in order to ease the programming of adaptive applications.

4 Approach

In order to support automatic adaptation of stateful components, the component
system must be capable of automatically restoring the state of a replaced component
at runtime. If the component system can predict the future unavailability of a compo-
nent, it can proactively store the state of the component before it is replaced. To do
this, the system interrupts the execution of the component, creates a consistent check-
point, restores the checkpoint at the target component and continues the execution
using the replaced component. In smart environments this technique is often used to
support users that are roaming between different environments [9], [11]. Apart from
smart environments, there are a number of other systems that utilize checkpoints to
facilitate adaptation. The Condor system for example uses checkpoints to enable the
migration of UNIX processes [8] and the one.world system uses checkpoints to sup-
port the mobility of so-called environments [5].

In cases where the future unavailability of a component cannot be predicted in a
sufficiently accurate manner, the component system must be capable of restoring a
component’s state at any point in time. A brute-force way to enable this is the creation
of a checkpoint whenever the state of the component changes. However, since the
device that creates the checkpoint can become unavailable, the checkpoint must be
transferred to some other device upon every creation. Thus, this approach clearly
introduces massive communication overhead. While there is no general solution to
this problem, there is a solution that can handle an important class of components,
namely components that behave like state-machines [10]. Since the state of such
components depends solely on the sequence of invocations that have been invoked on
them, their state can be restored by replaying the same sequence. This concept of
invocation histories is also used in mobile computing [6] and database systems [3],
where fault tolerance and the preservation of state is realized through transactional
message logs that are stored on a reliable server.

Our framework for (semi-)automatic adaptation is based on these concepts as it
combines a transparent checkpointing facility with an automatically generated invoca-
tion history. The major difference to other approaches results from the fact that peer-
based systems cannot rely on the permanent presence of a reliable server. Thus,
checkpoint and invocation history must be stored on the device that uses the stateful
component. This ensures that the state of the used component can be restored even if
the device that executed the component has become unavailable. The component
system stores invocations that are invoked on a component and occasionally creates
checkpoints to prune the invocation history. Whenever the component is replaced, the

4 Marcus Handte , Gregor Schiele, Stephan Urbanski, Christian Becker

system restores the latest checkpoint and replays any outstanding invocations before
the usage continues.

To create an invocation history, the component system stores a serialized copy of
all outgoing invocations. This is done on the caller-side at the time when the invoca-
tion is marshaled by the middleware. To determine the execution order between dif-
ferent application threads, the component system on the callee-side assigns sequence
numbers whenever an invocation is executed. This sequence number is later on trans-
parently transferred to the caller-side together with the result of the invocation. Upon
arrival, the system uses the sequence numbers to create a causally ordered history.

To support checkpointing, we first interrupt the component execution by transpar-
ently blocking all incoming invocations. Thereafter, we access the internal state of the
component and transfer the checkpoint to the using component. There, the checkpoint
is stored for later usage and the history is automatically pruned. While we could have
implemented the access to the internal state in a transparent manner, e.g. by using
Java object serialization, we did not want to break the encapsulation of components.
Especially, we wanted to enable component developers to create different component
implementations that use interchangeable checkpoint representations. Thus, we added
an interface that provides methods to read and write state. This enables developers to
manually map to different representations.

Since the component system automatically determines valid component replace-
ments, it needs to be able to determine whether a component can make use of a cer-
tain type of checkpoint. As this checkpoint type is determined by the used component,
it can vary at runtime depending on the latest binding. We reflect this fact by intro-
ducing a dynamic type attribute in the contractual descriptions of components. The
maintenance of this attribute is automatically performed by the system.

Finally, to fully automate the creation of checkpoints, the component system must
determine a suitable point in time to create them. Some possible parameters for the
automatic creation of checkpoints are the size of the invocation history, the execution
time of the invocations in the history or the cost creating the current component state.
While we have performed a number of experiments with automatically created check-
points, we currently do not have a solid metric that would be worthwhile discussing.
Thus, we leave this as a subject for our future research.

The mechanisms described above are sufficient to fulfill the requirements towards
automation, decentralized operation, proactive state maintenance and minimalism.
However, in order to support efficiency, we added three access methods that enable
component developers to interface with these mechanisms. First, we enable compo-
nent developers to manually manipulate the history. Thus, they can decide whether a
certain invocation should be stored. This is especially useful for idempotent methods,
e.g. getters. Second, we enable developers of stateful components to signal points in
time, when the creation of a checkpoint would be beneficial. This enables component
developers to balance the tradeoff between histories and checkpoints towards arbi-
trary optimization goals. Finally, we enable component developers to manually force
the creation of a checkpoint. Thus, if a component developer can foresee future adap-
tations, this can be used to speed up the state restoration.

Adaptation Support for Stateful Components in PCOM 5

5 Integration

In order to integrate the framework into our component system PCOM, we did not
have to make any changes to the original component model besides the additional
methods to support fine-tuning. Instead, most of the functionality is integrated into
interceptors that are hooked into the proxy objects of our middleware as shown in
Figure 1.

Proxy

Component
(Caller)

Component
(Callee)

Skeleton

Interceptor

ORB

C
ontainer

C
ontainerInterceptor

ORB

access()

<contract>
…
<requirement>

<history value=“enabled”/>
<checkpoint type=“any”/>

</requirement>
…

<contract>
…
<provision>

<history value=“supported”/>
<checkpoint type=“mytype”/>

</provision>
…

notify()History

Checkpoint
Figure 1. Framework Integration

The calling component can access the interceptor of the proxy in order to manipu-
late the history and to create checkpoints. Additionally, the interceptor allows the
registration of listeners that deliver checkpoint hints provided by the callee. This
enables the callee to signal points in time when the creation of a checkpoint would be
beneficial. The callee can access the interceptor of the skeleton in order to issue these
hints. Both interceptors have access to the contracts of the corresponding components
which enables them to retrieve and set the type information of the checkpoints.

Whenever a checkpoint is created, the interceptor of the proxy retrieves its type
and ensures that as long as a checkpoint is stored, the type of the checkpoint is re-
flected as a requirement towards components that can be bound to the proxy. When-
ever the bound component is reselected, the interceptor will transfer and restore the
state before the proxy can continue using the replacement.

6 Evaluation

To evaluate our approach, we performed experiments and developed some exem-
plary applications. In the following, we present measurements of the resource re-
quirements and the additional overhead introduced by our framework. After that, we
discuss experiences that we made during application development.

To evaluate the resource consumption of the invocation history we measured the
time and space requirements of remote calls with varying size. The presented numbers
are average results of performing 100 remote calls on two P3 / 700MHz over a 10
MBit LAN. The total number of runs was 30 per measurement. The resulting devia-
tions can be neglected. The results presented in Figure 2 show that the overhead for
creating sequence numbers and serializing the message is small compared to the over-
all time of the remote invocation (~5%). Regarding the space requirements, the intro-
duced overhead is linear with respect to the stored invocation size.

6 Marcus Handte , Gregor Schiele, Stephan Urbanski, Christian Becker

During application development we found that our framework is able to considera-
bly lessen the development effort for reselectable stateful components. As an exam-
ple, we developed a small application that is able to present Microsoft PowerPoint
presentations on a remote system. As the user moves, the application reselects the
currently used output component to display the presentation in the user’s direct vicin-
ity. The state of an output component consists of the currently presented slide. The
framework was able to fully automate the reselection of output components without
additional development overhead, allowing faster and less error prone development.

Duration of 100 Synchronous Remote Invocations

0

2000

4000

6000

8000

10000

12000

14000

8 Byte 512 Byte 4 Kbyte 100 Kbyte

Payload

Ti
m

e
(m

s)

Baseline Logging

Figure 2. Overhead for Invocation Logging

After the initial development was finished, we used the framework’s ability to cus-
tomize its behavior in order to decrease the resource consumptions of the application.
In our example, the framework stored all invocations send to the output component,
leading to a history of presented slides. In this application, however, the state of the
output component solely depends on the last shown slide. Therefore, we tuned the
framework to only log the last invocation that changed the presented slide and deacti-
vated checkpointing altogether. This not only reduces the memory requirements of the
history but also minimizes the number of remote calls.

7 Conclusion

In this paper we have presented an integrated framework that enables the (semi-)
automated reselection of stateful components in peer-based systems. This framework
combines the concepts of checkpoints and invocation histories. To support the dy-
namics of peer-based environments, the framework is capable of restoring the state of
a component automatically, even if the (possibly permanent) unavailability of a de-
vice cannot be predicted. Additionally, the presented framework enables application
developers to manually fine-tune its internal mechanisms. While manual fine-tuning
can increase efficiency in many cases, our experiments indicate that the automatic
solution is especially helpful during rapid prototyping. In the future, we plan to ana-
lyze different metrics to increase the efficiency of our fully automated adaptation
support.

Adaptation Support for Stateful Components in PCOM 7

References

[1] Becker, C., Handte, M., Schiele, G., Rothermel, K.: PCOM – A Component System for
Pervasive Computing, 2nd Intl’ Conference on Pervasive Computing and Communication,
2004

[2] Becker, C., Schiele, G., Gubbels, H., Rothermel, K.: BASE – A Micro-broker-based Mid-
dleware for Pervasive Computing, 1st Intl’ Conference on Pervasive Computing and Com-
munication, 2003

[3] Date, C. J.: An Introduction to Database Systems, 7th Intl’ Edition. Addison Wesley Long-
man (2000) 443-451

[4] Ferscha A., Hechinger M., Mayrhofer, R.: A Light-Weight Component Model for Peer-to-
Peer Applications, 24th Intl’ Conference on Distributed Systems Workshop (ICDCSW’04)
(2004) 520-527

[5] Grimm, R.: System support for pervasive applications. PhD Thesis, University of Washing-
ton (2002)

[6] Joseph, A.D., Tauber, J.A., Kaashoek, M.F.: Building reliable mobile-aware applications
using the Rover toolkit, 2nd ACM Intl’ Conference on Mobile Computing and Networking.
(1996)

[7] Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change management,
IEEE Transactions on Software Engineering, Vol. 16(11). (1990) 1293-1306

[8] Litzkow, M., Tannenbaum, T., Basney, J., Livny, M.: Checkpoint and Migration of UNIX
Processes in the Condor Distributed Processing System. Technical Report 1346, University
of Wisconsin-Madison. (1997)

[9] Roman, M., Ho, H., Campbell, R.: Application Mobility in Active Spaces. 1st Intl’ Confer-
ence on Mobile and Ubiquitous Multimedia. (2002)

[10] Schneider, F. B.: Implementing Fault-Tolerant Services Using the State Machine Ap-
proach: A Tutorial. ACM Computing Surveys, Vol. 22(4). (1990) 299-319

[11] Sousa, J. P., Garlan, D.: Aura: an Architectural Framework for User Mobility in Ubiqui-
tous Computing Environments. 3rd IEEE/IFIP Conference on Software Architecture. (2002)

[12] Yau, S., Karim, F., Wang, Y., Wang, B., Gupta, S.K.S.: Reconfigurable Context-Sensitive
Middleware for Pervasive Computing, IEEE Pervasive Computing, Vol. 1(3). (2002) 33-40

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

