
Dynamic Loading in an Application Specific
Embedded Operating System ?

Stefan Beyer1, Ken Mayes2, and Brian Warboys2

1 Instituto Tecnológico de Informática, Universidad Politécnica de Valencia, 46022
Valencia, Spain

stefan@iti.upv.es
2 Centre for Novel Computing, Department of Computer Science, University of

Manchester, M13 9PL, United Kingdom
{ken, brian}@cs.man.ac.uk

Abstract. Traditionally, configuration of operating systems is done stat-
ically at compile- or link-time, but recently dynamic run-time configura-
tion has become possible. Embedded systems however have constraints,
such as limited memory and real-time requirements, that prevent many
dynamically configurable operating systems from being used in an em-
bedded system.
Dynamic configuration has associated limitations: either execution time
overheads, due to complex code structures, or restricted flexibility. How-
ever, loading compiled code and linking it immediately at load-time
avoids many of these overheads. This paper describes efficient dynamic
loading and linking techniques employed as part of the Arena special-
purpose operating system to allow embedded systems to be configured by
replacing resource managers, such as the process manager. In Arena op-
erating system managers reside in user-level libraries. A general-purpose
loading-framework, designed specifically for embedded systems, is intro-
duced and the result of performance experiments are presented.

1 Introduction

Embedded systems are special-purpose systems. They are often designed to per-
form very specialised tasks. However, recently embedded systems have become
much more widespread and a high degree of flexibility is expected of systems
with very limited resources. Any operating system running on such a system has
to adapt to very specific application requirements. Therefore, configurable oper-
ating systems seem advantageous for embedded systems. There are two ways in
which operating systems can be configured:

Static configuration is done at compile- or link-time. The operating system
consists of components, which are combined to build a specialised “version”
of the operating system.

? This work has been partially supported by the Spanish MCYT grant TIC2003-09420-
C02-01.

Dynamic configuration is performed at run-time, either through external in-
put, for example via user interaction, or automatically, as the result of the
application requesting a re-configuration.

Static configuration tends to be more efficient at run-time, but it is less
flexible than dynamic configuration. Static configuration is limited in that the
type of specialisation needed may not be known until run-time. For instance,
a memory management system can take advantage of information about page-
usage collected at run-time to alter the page replacement policy, in order to
reduce paging overhead.

This paper concentrates on the dynamic re-configuration of embedded sys-
tems. All the re-configurations performed in the experiments are application-
driven. That is, the re-configurations happen as a reaction of the application to
its current state. It is however easy to adapt the techniques described to perform
re-configuration as a result of user-input.

The requirements for a dynamic configuration system for embedded operating
systems are as follows:

Requirement 1: The system should allow low-level resource managers
to be configured. This is important to allow the flexibility needed to adapt
to the very different needs embedded applications might have.

Requirement 2: The run-time overhead should be minimal. Embedded
systems are often designed to work with a very minimal hardware specifica-
tion to save both cost and power. A dynamic configuration system should
not introduce any significant overhead into the execution speed of the em-
bedded application. Note, that this requirement does not refer to the speed
of the actual reconfiguration, but to the run-time efficiency of the embedded
application in general. Configuration efficiency is covered by requirement 5.

Requirement 3: The memory footprint should be small. Memory on
embedded systems is limited. Particularly on systems without a Memory
Management Unit (MMU), where no virtual memory is available, it is vital
that the dynamic configuration system does not take up much memory.

Requirement 4: The system should not require an MMU. Many em-
bedded systems do not have an MMU. It is on systems without MMU that
dynamic configuration is most problematic.

Requirement 5: The Reconfiguration should be reasonably fast com-
pared to the lifetime of a long-lived application. The more often a
reconfiguration occurs, the faster it should be accomplished, to keep the im-
pact on the efficiency of the embedded system to a minimum. For example,
if a reconfiguration is to take place once every 10 minutes, it is not a problem
if it takes 10ms. However, if a reconfiguration of such a duration was to take
place every 20ms, the overhead would be huge.

Requirement 6: Real-time computing should be possible. The system
should be predictable, so that real-time constraints can be met. Whether a
system is in a “real-time mode” may depend on the particular configuration,
but the introduction of a dynamic configuration system should not make
real-time computing impossible.

Existing systems have been reviewed in the context of these requirements and
have been found unsuitable. Therefore, a system which fulfils the requirements
has been developed, based on dynamic code loading. The approach has been
developed for operating system configuration on embedded systems with limited
resources, but can also be used as the basis for a flexible component system at
application-level.

The dynamic code-loading approach has been applied to the Arena library
operating system, in which Operating System Mangers (OSMs) are implemented
in user-level libraries, linked to the application. In this scheme, the application
requests the loading or replacement of an OSM from a remote system over a
network. A local dynamic linker then links the OSM into the running applica-
tion. Note that this differs from dynamically-linked shared libraries [1], in that
the loading and linking of the OSM happens during execution, rather than at
application-load-time3.

Two possible target applications have been implemented to demonstrate the
flexibility of the system [2]. The first of these case studies is a system which
allows the replacement of the process manager (PM). The application specifies
a new required scheduling policy and the system loads an appropriate PM over
the network and links it into the application. Performance experiments have
shown that there is no measurable overhead in running a dynamically-linked
PM, compared to a statically linked PM, once the loading and linking has been
achieved [3].

As a second case study, network protocol loading has been investigated. A
system has been implemented which automatically loads transport and appli-
cation level protocols when needed. TCP [4] and HTTP [5] have been used as
example protocols. The system saves valuable memory by “listening” to specific
protocol ports without the full protocol implementation being present on the
system. The protocol is loaded when a message needs to be sent or received.
To demonstrate this loading of network protocols, a small embedded web server
has been implemented. TCP and HTTP are only loaded when a request for a
web page is received. A possible target application of this could be a multimedia
device, which uses UDP [6] to stream data most of the time, but might occasion-
ally be re-configured using a remote web interface over HTTP and TCP. Using
dynamic protocol loading, it is possible to save memory otherwise occupied by
these protocols for the actual streaming data.

This paper, rather than focusing on the two case studies, concentrates on
the results of further experiments which have been performed to analyse the
behaviour of the code loading system. To this end code modules from real world
libraries have been loaded. The load times were measured and compared against
code size, the number of relocation entries in the files and the number of symbols
that had to be resolved.

3 There are performance improving measures with dynamically-linked shared library
approaches that delay the resolution of certain symbols until the first reference to
them is made at run-time.

2 The Arena Operating System

The work described here is based on the Arena library operating system. Arena
is an application-oriented operating system [7] [8] intended for both distributed
and real-time applications [9] [10].

Arena introduces a separation between mechanism and policy. Low-level
mechanisms are provided by a hardware-specific nano-kernel, the hardware ob-
ject (HWO). The HWO provides mechanisms, such as the ability to save and
restore the contents of the registers, but does not impose any policy on the con-
text in which these registers are saved and restored. This architecture keeps the
HWO free of operating system policy, but provides an architecture-independent
hardware abstraction with opaque data types for low-level entities, such as reg-
ister contexts.

All operating system policies are implemented in user-level libraries. These
libraries are linked to the application, allowing the application programmer to
choose the policies required, by linking to different version of these libraries.

The tight coupling between application and operating system policies leads
to operating system managers (OSMs), such as the process manager, residing
at user-level. The OSMs interact with the HWO through the HWO provided
downcall interface. Furthermore, OSMs provide an upcall interface to enable the
HWO to cause OSM code to be executed.

 HWO

Application

......SMPM

Arena

Policy

Mechanism

PM SM

Monolithic

 Kernel

Mechanism

 +

 Policy

Application

UNIX

Fig. 1. Arena vs. Unix

Figure 1 compares Arena to Unix. Whereas in Unix the policies are general-
purpose and are contained within the monolithic kernel, in Arena they are
linked to the application. Therefore, it is much easier for an application to
modify a policy to match its requirements. This makes Arena “application-
compliant”. As noted above, Arena provides an upcall interface, to allow execu-
tion of application-specific policies when low-level events occur. It can be argued
that Unix provides an upcall interface in the form of Unix signals, but in Arena
upcalls are used as the default mechanism to provide application-compliant event
handling. On the occurrence of a hardware event, the HWO can make an upcall
to some user-level resource manager. The upcall mechanism enables deferred
processing of the event via an application-specific event handler thread. Fig. 2
shows how a hardware interrupt may cause the HWO to invoke the user-level
process manager, which schedules a user-level event handler thread.

PM

Application
Thread

Application
Thread

Schedule

Upcall

HWO

Interrupt

Application

Event Handler
Thread

User−Level

Fig. 2. Arena Event Handling

3 Dynamic Code Loading

OSMs are implemented as user-level resource managers in libraries in Arena. For-
merly, these were statically-linked to the application to achieve re-configuration.
It is a logical development to allow the application to load different versions of
these libraries dynamically as a means of re-configuring the operating system.
This work introduces the dynamic loading and replacement of user-level mod-
ules which can be either regular code modules or resource managers on Arena. In
contrast to other dynamic configuration systems, the system introduced here, is
optimised for embedded systems, especially embedded systems without an MMU
and without secondary storage. In order to reduce the run-time overhead, code
is patched directly, in the same way as performed by a static linker.

The dynamic code loading system described in this paper provides a library
at the application level which can be used to load any piece of code. An appli-
cation programmer could use this library to directly load or replace operating
system components. However, the application programmer is assumed not to
be an expert in operating systems implementations. Furthermore, he might not
be the ideal person to make the choices to configure the system. The library
provided is aimed at operating system and system level programmers for the
implementation of re-configuration layers. Such a re-configuration layer provides
certain options for the application programmer to choose from, such as “real-
time mode” as a scheduling policy. The layer then makes the necessary choices to
load an appropriate scheduler. The actual module loading is hidden from the ap-
plication programmer. Two such re-configuration layers have been implemented
as part of the case studies mentioned in Section 1.

4 Previous Work

4.1 Dynamically Configurable Operating Systems

Many conventional monolithic operating systems allow modules to be loaded
into a running kernel. Linux and its kernel module loader [11][12] are a read-
ily available example. Conventional micro-kernel-based systems, such as Mach
[13], place OSMs in user-level servers. An OSM can theoretically be replaced by
stopping a server and restarting a different version of it. However, these systems
tend to be general-purpose and cannot give full control to applications, due to
their multi-application and multi-user paradigms. Another problem is the fact
that certain low-level policies, for instance in scheduling, cannot be modified.
These systems violate requirements 1 and 6.

The Kernel Toolkit (KTK) [14] and Chimera [15] are systems that consist of
a selection of configurable components, which have to be present on the system
all the time, meaning that the system might be relatively large, if high flexibility
is required. Therefore, there seems to be a trade off between requirements 1 and
3 in these systems.

Systems based on scripting (µChoices [16]), type and pointer-safe kernel ex-
tensions (Spin [17]) or virtual machines (Inferno Operating System [18], Java

[19]) do not allow configuration of certain low-level resource managers and there-
fore violate requirement 1, with some of them violating other requirements as
well.

4.2 Dynamic Code Loading Systems

Distributed systems, such as CORBA [20] or Jini [21] “emulate” dynamic code
loading. However, the network latency of service access might be unacceptable for
some real-time applications (requirement 6). Most importantly, such distributed
approaches do not allow low-level system manipulation (requirement 1).

Dyninst [22] is a somewhat low-level approach to dynamic code loading. It
lacks flexibility, as it cannot link in arbitrary code (requirement 1).

Probably the most suitable approaches for arbitrary dynamic code loading
are based on dynamic linking.

ELF systems [23] typically provide an API to the dynamic linker that can
be used by the programmer to implicitly load executables. Apart from relying
heavily on a UNIX environment, this system uses ELF shared objects, which are
used for shared libraries. These shared libraries are loaded through the memory
management subsystem on UNIX systems and rely heavily on the fact that pages
are only loaded when needed (requirement 4). Therefore, the components of a
library tend to be combined in a few big shared object files and it is not trivial to
extract smaller sized-objects from the shared objects, such as relocatable object
files from static library archives.

DLD [24] enhances a.out-based systems with dynamic loading and unloading
of modules. DLD is a library package providing the ability to load relocatable
object files, normally used as input files for static linkers, into a running appli-
cation. The unlinking process relies on a garbage collector. DLD is the closest of
all existing systems surveyed to the loading system described here. However, it
was designed for UNIX systems and certain aspects of it, in particular the use
of a garbage collector, make it less useful for embedded systems with memory
restrictions and real-time constraints (requirement 6).

5 The Dynamic Object Loader

A dynamic object loader (DOL) has been developed for the Arena operating
system. Figure 3 shows a overview of Arena with the DOL and a process manager
switcher (PMS). The PMS is described in [2] [3]. In the Arena HWO nano-kernel,
the Arena loader protocol (ALP), a very light weight transfer protocol, resides
at the top of the network protocol stack. ALP is similar to TFTP [25] and is
implemented directly on IP [26] in the prototype implementation. It provides
the DOL with a simple send and receive interface, which allows the transfer of
modules (MOD in figure 3) from a remote module server. The remote system
contains an application server, which answers requests for whole applications
and a module server, which is responsible for the transfer of modules (figure 4).
ALP packet types allow requests for either whole applications, whole modules

or individual symbol or string tables. This ALP interface is used by the DOL,
which is linked into the application at user-level to load the modules and link
them into the application. Loadable modules are contained in ELF relocatable
object files.

The DOL can be used by the application either directly or through a spe-
cial OSM layer, such as the PMS in figure 3. The application is loaded by the
HWO using its application loader component (“Appl.Load” in figure 3). This
application loader interacts with the remote application server to pull over the
application executable. Once the application has been loaded in memory, it may
require the loading of further modules. That is, subsequently, as required, mod-
ules can be loaded by the DOL. The DOL interacts with the remote module
server to pull over the required modules.

App. Load

ALP

HWO
Network Protocol

Stack

OSMOSM

MOD

DOL

Downcall Inteface
Upcall /

Request modules

PM

MOD

PMS

link

link
link

Application

Fig. 3. System Overview

Load Application

Load Module

Request Module

Application
Server

Module
Server

Server OS

Embedded

System

Request Application

Fig. 4. Application and Module Server

It is vital that the DOL keeps a track of the symbols and string tables of
the main program and of loaded modules so that symbols can be resolved and
linked. In order to achieve this, the DOL maintains state with an entry for each
loaded module. A module entry in this state contains the name of the module,
the locations and sizes of the symbol and string tables and information about
all the sections of the module 4. Each module is also given a type. For example,
regular modules (i.e.non-OSM modules) are of type REG and process managers
are of type PM. The main program also has an entry in this module state, of type
PSEUDO, so that symbol references to the main application can be resolved.

The initialisation of this DOL state is achieved by a call to

int dol_init (char *name);

dol init takes the name of the main application as an argument. Its main
purpose is to set up the PSEUDO entry in the DOL state. The remote module
server is contacted and the string and symbol tables of the main application
are requested. Since the module server executes in the same context as the
application server (which sent the application itself to Appl.load), the module
server can obtain the required string and symbol tables and send them to the
DOL. dol init then creates the PSEUDO module entry in its state. The main
application symbols and strings are now accessible to the DOL.

When a module is required the function

int dol_load_module (char *name, int type);

4 Not all sections of the ELF relocatable file containing the module have to be loaded.

is called. This loads the specified module into application memory and updates
the DOL state with a new entry for the new module. The module server is con-
tacted with a request for the section header table and section header string table.
The DOL loads all loadable sections, including the string and symbol tables. The
DOL state for this module is set to the specified type, and the locations of the
string symbol tables noted. Next, the symbol table is relocated to contain the
actual location of each symbol declared inside the module. This is followed by
looking for sections in the newly-loaded module containing relocation informa-
tion and performing each relocation. References which cannot be resolved within
the module itself are undefined references, and require DOL to search through
its module state for the location in other, previously loaded, modules. These
undefined references are resolved by patching the code directly, as with a static
linker. This means that for references from module to module and from module
to main program, no indirection is needed, as is the case with most dynamic
linkers. This approach however, introduces a problem on some machines, such
as RISC machines, where branch offsets do not cover the full address space. For
example jumps on the 32-bit ARM architecture have to be within 32 MBytes.
This can be solved by introducing indirections in the few cases in which the
problem occurs.
For references from the main application to a loaded module the function

void *dol_get_symbol (char *name);

is provided. This function searches through the symbol tables of loaded modules
and returns a pointer to the location of the requested symbol.
Unloading can be achieved by the following 2 functions:

int dol_unload_module (char *name);
int dol_unload_module_by_type (int type);

These functions take the name or the type of the module respectively. Unloading
by type allows the unloading of an OSM without the caller needing to know the
name of the current OSM of that type. This is possible because there is only one
instance of any OSM type at any one time.

6 Performance

6.1 Overview and Experimental Setup

In order to investigate the characteristics of the code loading system, a series of
experiments were carried out.

All experiments were run on an Atmel AT91M40800-based development
board (32MHz), with 4MB of external RAM and Cirrus Logic CS8900A 10Mbps
ethernet chip. The GCC 3.2.2 compiler and GNU assembler 2.13.2.1 were used
to build Arena, the test application and the process managers. The application
server and the module server, from which modules were loaded, ran on an In-
tel PC (Intel Celeron 566MHz, 128Mbyte RAM) running Linux kernel 2.4.19.

The module server was compiled using GCC 2.96. The network link between the
development board and PC was a dedicated 10Mbps ethernet link.

Modules of different code size and with different numbers of relocation entries
were loaded. The modules were chosen to be real-world code examples, rather
than artificially created test modules. Some of the modules were individual re-
locatable objects files from the Arena C library (libc.a). Other modules used
were those from the case studies which have been mentioned in section 1 and
are described in detail in [2].

Two measurements were taken for each file:

– The network transfer time is the time it takes to request a module over
the network and transfer its sections onto the embedded system.

– The link time is the time it takes to link the newly loaded module into the
application. This involves processing all the relocation entries in the module’s
relocation table.

These two times added together represent the total object load time. The
timer resolution was 1ms.

6.2 The Influence of Code Size on Load Times

Figure 5 shows the network transfer and link times of modules with increasing
code size. It can be seen that the network transfer time generally increases with
the code size. There is one exception at 940 bytes, where the transfer of the
modules is faster than the transfer of the next smaller module. A closer inspection
of the module has shown that in this particular case the code is contained in a
relatively small number of sections compared to the other modules. The ALP
protocol transfers the modules by sections, so the transfer of the module with
fewer sections is stopped and restarted less often. This might explain the slightly
faster network transfer.

Although, in general the network load time increases with code size, as might
be expected, the increase in link time does not to seem to follow a regular
pattern. Overall there seems to be a trend to increasing link times as the code
size is increased, but there several large variations from the expected visible in
the diagram. These variations seem to suggest that code size is not the only
factor which influences the link time.

6.3 Influence of Relocation Entries on Link Time

To investigate the behaviour of the link time in more detail the number of
relocation entries in each module has been counted. Linking, as it is performed
by the DOL, involves processing all these relocation entries.

Figure 6 shows the link time for each module. It can be seen that there
does not seem to be regular pattern in the increase of link time, as the number
of relocation entries increases. There are several surprising sets of results. For
example the linking of a module with 60 relocation entries took 25ms, whereas

615 700 924 940 1164 1576 1840 2424 2980 3640 5172 33032
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Network transfer
(ms)

Link time (ms)

code size (bytes)

tim
e

(m
s)

Fig. 5. The influence of Code Size on Network Transfer Time and Link Time

a the linking of a module with 74 relocation entries took 127ms. This increase in
link time seems very un-proportional. A module with 86 relocation entries only
took 110ms to be linked.

These results seem to suggest that the number of relocation entries has little
influence on the link time.

6.4 Influence of Number of Unresolved Symbols on Link Time

In order to further investigate the factors that influence the link time, the re-
location entries were looked at in more detail. It was noted that some reloca-
tion entries refer to module internal relocations and some to unresolved sym-
bols. Internal relocations do not require the symbol tables of other modules to
be searched, whereas finding unresolved symbols introduces further processing.

0 1 6 9 10 22 25 57 60 74 86 560
0

50

100

150

200

250

300

350

400

450

500

550

600

650

number of relocation entries

lin
k

tim
e

(m
s)

Fig. 6. The Influence of the Number of Relocation Entries on Link Time

Therefore, internal relocations were removed from the analysis and the number
of relocations referring to unresolved symbols were counted for each module.

Figure 7 shows the number of unresolved symbols per module together with
their link time. Those modules that did not have any unresolved symbols had
a link time which was too close to the timer resolution to represent meaningful
measures. Therefore, these measurements with zero unresolved symbols are not
included in the figure, although these figures lie within the trend of the figure.
It is clear from this analysis that the increasing number of unresolved symbols
seems to be the major factor in the increase in link time.

There is one surprising result at 37 unresolved symbols. The module seems to
load faster than the module with 29 unresolved symbols. Closer inspection of the
module has revealed that the majority of the unresolved symbols in that fast-
linking module are located in the symbol table of another small dynamically-
loaded module, rather than in the main application. Therefore, the size and

1 5 13 29 37 135
0

50

100

150

200

250

300

350

400

450

500

550

600

650

number of unresolved symbols

lin
k

tim
e

(m
s)

Fig. 7. The influence of the Number of Unresolved Symbols on Link Time

location of the symbol tables that are searched seem to influence the link time
as well.

However, an experiment in which the modules were loaded in a different
order found no significant variation in the link time. Changing the order in which
modules are loaded changes the order of the entries in the module info data-
structure. Therefore, when subsequent modules are loaded the symbol tables
should be searched in a different order.

6.5 Discussion

The results have shown that the code size of the modules that are loaded are
the largest influence on the network transfer time. The largest influence on the
link time is the number of unresolved symbols.

In general the network transfer time seems to be greater than link time, but
the ratio changes, as the number of unresolved symbols increases. Therefore, the
ratio between network transfer time and link time depends on the nature of the
application; that is on the interactions between different modules.

Note that most of the modules used for these experiments were extracted
from the Arena C library. The Arena C library is a simple C library, which
has not been optimised to reduce the number of cross-references between mod-
ules. Many libraries are optimised by bundling code into module files in a way
that minimises cross-references between modules. This reduces the number of
unresolved symbols. Optimising libraries in this way could improve the load
performance of the DOL.

7 Conclusion

It has been shown that embedded operating systems can be configured dynami-
cally by loading and linking code into the system at run-time. The Arena oper-
ating system provides a platform in which OSMs reside in user-level libraries. A
system has been developed which allows the loading of relocatable pieces of code
into the running system. This system has been successfully used to replace low-
level operating system components, such as the process manager and network
protocols.

The dynamic code loading approach can be used in embedded systems that
require a high degree of flexibility, but also have to operate with limited resources.
The system can be used for operating system configuration, but also as the basis
for a flexible and efficient component system.

The results presented in this paper show the load time behaviour of the
system. Further experiments [3] have shown, that the run-time overhead, ones
the loading of components has been achieved, is minimal.

The system has been used in two case studies to replace process managers
and load network protocols dynamically. Furthermore, the use of the system as
the lowest layer in a framework for evolvable software systems is currently being
investigated in the ArchWare project [27].

References

1. Gingell, R.A., Lee, M., Dang, X.T., Weeks, M.S.: Shared libraries in sunOS. Pro-
ceedings of the USENIX 1987 Summer Conference (1987) 131–145

2. Beyer, S.: Dynamic Configuration of Embedded Operating Systems. PhD thesis,
University of Manchester (2004)

3. Beyer, S., Mayes, K., Warboys, B.: Dynamic configuration of embedded operating
systems. In: WIP Proceedings of the 24th IEEE Real-Time Systems Symposium.
(2003) 23–26

4. Postel, J.: Transmission Control Protocol — DARPA Internet Program Protocol
Specification – RFC 793. (1981)

5. Berners-Lee, T., Fielding, R., Frystyk, H.: Hypertext Transfer Protocol –
HTTP/1.0 - RFC 1945. (1996)

6. Postel, J.: User Datagram Protocol- RFC 768. (1980)
7. Mayes, K., Quick, S., Bridgland, J., Nisbet, A.: Language- and application-oriented

resource management for parallel architectures. In: ACM SIGOPS European Work-
shop. (1994) 172–177

8. Morrison, R., Balasubramaniam, D., Greenwood, M., Kirby, G., Mayes, K., Munro,
D., Warboys, B.: A compliant persistent architecture. Software - Practice &
Experience, Special Issue on Persistent Object Systems 30 (2000) 363–386

9. Kingsbury, S., Mayes, K., Warboys, B.: Real-time arena: A user-level operating
system for co-operating robots. In: Proceedings of The International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA),
CSREA Press (1998) 1844–1850

10. Beyer, S., Mayes, K., Warboys, B.: Application-compliant networking on embedded
systems. In: Proceedings of the 5th IEEE International Workshop on Networked
Appliances. (2002) 53–58

11. Bovet, D.D., Cesati, M.: Understanding the Linux kernel. O’Reilly (2000)
12. Henderson, B.: Linux loadable kernel module howto (2001)
13. Rashid, R., Baron, R., Forin, A., Golub, D., Jones, M., Orr, D., Sanzi, R.: Mach:

A foundation for open systems. In: Proceedings of the Second Workshop on Work-
station Operating Systems. (1989) 109–113

14. B. Mukherjee, K.S.: Experimentation with a reconfigurable micro-kernel. In: Pro-
ceedings of the USENIX Microkernels and Other Kernel Architecture Symposium.
(1993) 45–60

15. Stewart, D.B., Volpe, R.A., Khosla, P.K.: Design of dynamically reconfigurable
real-time software using port-based objects. Software Engineering 23 (1997) 759–
776

16. Li, Y., Tan, S.M., Sefika, M.L., Campbell, R.H., Liao, W.S.: Dynamic customiza-
tion in the µchoices operating system. In: Proccedings of Reflection ’96. (1996)

17. Bershad, B.N., Chambers, C., Eggers, S.J., Maeda, C., McNamee, D., Pardyak, P.,
Savage, S., Sirer, E.G.: SPIN - an extensible microkernel for application-specific
operating system services. In: ACM SIGOPS European Workshop. (1994) 68–71

18. Pike, R., Presotto, D., Dorward, S., Ritchie, D.M., Trickey, H., Winterbottom, P.:
The inferno operating system. Bell Labs Technical Journal 2 (1997)

19. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley,
Reading, MA (1997)

20. Object Management Group: The common object request broker: Architecture and
specification (1995)

21. Sun Microsystems: Jini[tm] Architectural Overview. (1999)
http://wwws.sun.com/software/jini/whitepapers/architecture.html.

22. Buck, B., Hollingsworth, J.K.: An API for runtime code patching. The Interna-
tional Journal of High Performance Computing Applications 14 (2000) 317–329

23. Tools Interface Standards - TIS: Executable and Linkable Format (ELF), version
1.2, Portable formats specifications. (1995)
http://x86.ddj.com/ftp/manuals/tools/elf.pdf – access date: 29 July 2002.

24. Ho, W.W., Olsson, R.A.: An approach to genuine dynamic linking. Software -
Practice and Experience 21 (1991) 375–390

25. Sollinsl, K.: The TFTP Protocol (Revision 2) – RFC 1350. (1992)
26. Postel, J.: Intenet Protocol — DARPA Internet Program Protocol Specification –

RFC 791. (1981)
27. The ArchWare research project: Project website

http://www.arch-ware.org (2005)

