
ARPushPush: Augmented Reality Game in Indoor
Environment*

Kiyoung Kim, Minkyung Lee, Youngmin Park,
Woontack Woo
GIST U-VR Lab.

Gwangju 500-712, S.Korea
+82-62-970-315

{kkim, mlee, ypark, wwoo}@gist.ac.kr

Jongweon Lee
Department of Digital Contents

Sejong University
Seoul 143-747, S.Korea

+82-2-3408-3798

jwlee@sejong.ac.kr

ABSTRACT
In this paper, we propose ARPushPush, a novel augmented reality
game for indoor environment, which uses vision-based tracking
and user’s hand gestures. The systems using trackers are too
expensive and the calibration between a camera and a tracker,
which is indispensable for vision-based interaction, is not easy.
The proposed system only uses two cameras for tracking markers
and augmenting virtual objects, respectively. The tracking camera
detects ARToolKit markers attached on the ceiling and calculates
the pose of user’s head on the fly [11]. The HMD camera detects
markers attached to the back of user’s hand for interaction and
gives augmented view to a user. The transformation matrix
between two cameras is updated when markers are visible in each
camera. To support wide working area effectively, we propose an
algorithm to train multiple markers on the ceiling. In the
ARPushPush based on our framework, a user acts to move blocks
augmented in a virtual maze to predefined places. The proposed
framework allows a user to work in wide area, to interact
naturally, and to collaborate with other users.

Keywords
Augmented Reality, ARToolKit, HCI, Game, VR, Hand gestures

1. INTRODUCTION
Augmented Reality (AR) is a technology which provides more
enhanced immersion by seamless merging of real and virtual
worlds. And it also provides realism through interaction with
augmented objects [1]. Tracking and interaction technologies are
essential for implementation of AR applications. Especially, the
recent developments in tracking technologies guarantee wider AR
environment.

Many researchers have developed AR systems which enlarge
user’s working area to wide indoor environment. Foxlin et al.
proposed ‘Vis-tracker’ which tracks user’s head pose in indoor
environment with gyro sensors and vision sensors [2]. ‘Vis-
tracker’ estimates user’s head pose using markers on the ceiling

and the wall. Galantay et al. proposed ‘Living-room’ which
emphasized interaction [3]. ARToolKit markers are attached
densely on the ceiling and the wall. It helps robust tracking of
user’s head pose. Piekarski et al. proposed a hybrid tracking
system which can be applied to indoor and outdoor environment
[4]. The estimation of user’s head pose is done by using GPS
outdoors and ARToolKit markers indoors. Thomas et al.
developed ‘ARQuake’ game with first-person view with
Pierkarski’s system [6]. Recently, Nakazato et al. proposed IR
marker system which is robust against the light condition [5].
However, it has lower frame rate than the others. Previous
systems which put tracking devices to practical use in indoor
environment provide accurate tracking results of user’s head
pose.

However, the previous systems using trackers are too expensive
and the calibration between a camera and a tracker, necessary to
support vision-based interaction, is not easy. Since arrangement
of all markers are required, it is hard to cover the experimental
environment with markers dynamically. Additionally, markers
attached on the wall, not the ceiling, obstacle user’s natural view.
As a result, immersion of user’s to the AR environment is reduced.

To overcome these problems, we propose a vision-based AR
system designed for entertainment applications in indoor
environments. The system uses vision-based tracking method and
user’s hand gestures to interact with augmented objects. First, we
attach a marker tracking camera to the Head Mounted Display
(HMD) in order to enhance vision-based interaction. Second, we
attach multiple markers to the ceiling in arbitrary order to avoid
burden of arrangement and occlusion problems. The tracking
camera detects ARToolKit markers on the ceiling and calculates
the pose of user’s head on the fly. The HMD camera estimates
absolute poses by using the calibration result. The calibration
result between two cameras is updated when markers are visible
in each camera. Third, we attach an interaction marker to the back
of user’s hand. Combining of an interaction marker and user’s
hand gesture makes a certain interaction function for controlling
games and blocks. ARPushPush is proposed to show usefulness of
the proposed framework. In the game, a user acts to move virtual
blocks in augmented maze to predefined places.

* This research is supported by Immersive Contents Research

Center (ICRC) and Realistic Broadcasting Research Center
(RBRC) in GIST.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PerGames’05, May 11, 2005, Munich, Germany.
Copyright 2005 ACM 1-58113-000-0/00/0004…$5.00.

The proposed system enlarges user’s working area to indoor
environments. It allows users intuitive interaction with augmented
objects with the help of hand gestures. Also the occlusion
problems, which mean user’s hands occlude markers, are solved
by using markers on the ceiling. Thus, it increases user’s
immersion through continuous virtual object augmentation.

This paper is organized as follows: In chapter 2, we describe the
background of the proposed AR system. Also, we explain
calibration method, multiple marker training method, and
interaction algorithm. In chapter 3 we will show experimental
results, and finally, conclusions and future works are presented in
chapter 4.

2. THE PROPOSED SYSTEM
2.1 System Configuration
The proposed AR system, as shown in Figure 1, adopts vision-
based tracking using ARToolKit markers, instead of expensive
tracking devices. It consists of two vision system. One is to track
multiple markers attached on the ceiling, the other is to augment
virtual objects based on the reference marker.

Ceiling

Multiple markers for tracking Reference marker

Augmented blocks

HMD camera

Tracking camera

User’s head

Figure 1. Configuration of the proposed AR system

Relative positions of markers attached on the ceiling in arbitrary
order are trained in off-line process. In on-line process, absolute
pose of a tracking camera relative to the reference marker is
estimated by exploiting marker transformations stored during off-
line process. Relative transformation between an HMD camera
and a tracking camera is calculated by solving AX=XB problem
[7]. Multiplying obtained transformation X to pose of a tracking
camera, we get the transformation matrix of the HMD camera
relative to the reference marker. Through this procedure, virtual
objects are represented in the reference marker coordinate. Figure
2 shows the overall flow of ARPushPush game system including
two processes.

Multiple marker training (off-line)

Augmentation / Interaction (run-time)

Images of markers
on the ceiling

Calculate the transformations
between neighbor makers

Save it as a
file

Calculate the pose of tracking
camera

Calculate the pose of HMD camera
(Augmentation)

Calculate the pose of markers
attached on the back of user’s hand

Determine the hand gesture
(Interaction)

ARPushPush Game Logic

Figure 2. Overall flow of ARPushPush system structure
including off-line process and run-time process

ARPushPush is AR version of a popular game PushPush. In
PushPush game, a mission is to move the blocks to the pre-
defined spaces. The logic of ARPushPush is the same as original
PushPush game. There is a playground which includes several
roads. The blocks are located on the road according to the game
rules.

2.2 Calibration between a tracking camera
and an HMD camera
In this section, we describe a method which calibrates rigid-body
transformation between two cameras in real time. Two cameras
cannot have correspondent image points because of the structural
limitation as shown in Figure 1. Thus, we cannot obtain the rigid-
body transformation between two cameras with previous
approaches, such as a method using calibration pattern [8].
Additionally, it is impossible to reduce the errors occurred
whenever a user moves.
The relationship between a tracking camera and an HMD camera
is represented as rigid-body transformation X including rotation
and translation. Since two cameras are fixed on the same body, X
is preserved whenever a user moves. Each camera movement
from (i)th frame to (i+1)th frame is represented as rigid-body
transformations Ai and Bi, respectively.









=

10
xx tR

X








=

10
,, iaia

i

tR
A 








=

10
,, ibib

i

tR
B (1)

where, R represents 3×3 rotation matrix, t means 3×1 translation
matrix.

X X

Ai

Bi

… …

ith frame (i+1)th frame

Figure 3. The relationship between a tracking camera and an
HMD camera in (i)th frame and (i+1)th frame, Ai, Bi mean
rigid transformation between (i)th frame and (i+1)th frame of
an HMD camera and tracking camera, respectively.
With the proposed system, rigid-body transformation of a tracking
camera Bi is known through tracking markers on the ceiling. And,
the transformation Ai can be calculated by tracking markers on the
back of user’s hand. The transformation relationship among Ai, Bi,
and X is represented as follows:

ii XBXA = (2)

Equation (2) is separated into two parts. Rotation matrices and
translation matrices can be separated as follows:

ibxxia RRRR ,, =
iaibxxia ttRtIR ,,,)(−=− (3)

To get Rx in equation (3), we use the clue that the eigenvalues of
Ra,i and Rb,i is the same. That is, the relationship between Ra,i and
Rb,i is similarity transform.

)(1
,,

−== x
T
xibxia

T
x RRRRRR Q (4)

We can derive following equation with equation (4)

ibxia eRe ,, = (5)

where, ea,i and eb,i is eigenvectors of Ra,i and Rb,i, respectively.
Thus, rotation matrix of X is obtained by calculating Rx which
minimizes equation (6).

　 ∑
=

−=
n

i
ibxia eRef

0

2

,,
 　 (6)

where, n is the number of image motions. Minimizing equation
(6) is well described in [7].

If Rx is known, we can calculate tx with easy by using equation (3).
Since the scale of translation is determined by real length of
marker size, we do not need to care about scale effect. Thus,
equation (3) is solved in linear method, such as SVD (Singular
Value Decomposition). Equation (3) can be written in equation
(7).

　 0
1......

)(,,, =














 +−− xiaibxia ttuRIR 　 (7)

The calibration process between an HMD camera and a tracking
camera is summarized as follows:

Step 1: Gather at least 2 pairs of rigid transformations of
tracking camera and an HMD camera {Ai, Bi}
Step 2: Calculate rotation matrix of X minimizing equation (6)
Step 3: Calculate translation matrix of X solve equation (7)
using SVD method
Step 4: (Optional) Nonlinear optimization

2.3 Training method for multiple markers
There is a problem when we attach multiple markers to the ceiling.
Even though ARToolKit supports the efficient routine that tracks
multiple markers, it requires the exact transformation matrices
between multiple markers [11]. In our case, attaching markers to
the ceiling is hard work with predefined exact transformations.
Thus, we need the training method that calculates transformations
by using only marker information.

In this paper, we propose a method which resolves problems of
previous works by measuring pose relations between initial
markers. At first, markers are attached on the ceiling in arbitrary
positions, and then select an origin marker in marker group. With
the reference, the pose relationship among neighboring markers is
calculated.

AA BB

Origin marker

FOV of tracking camera

TABTOA

TOB=TABTOA

…
…

1
2

Figure 4. Procedure to extract relative relationship between
markers on the ceiling, 1 is the first step and 2 is the second
step.
All the markers on the ceiling cannot be included in FOV (Field
Of View) of a camera at the same time. Thus, we need an
algorithm to calculate relative positions between maximum
numbers of markers which can be recognized in one image. For

example, shown in Figure 4, we get an image which includes the
origin marker and A marker. Then, we calculate TOA, relative rigid
transformation matrix, using the camera pose matrices at each
marker. If we get an image which only includes marker A and B,
then first we calculate TAB with same method, and then we apply
TOA calculated before. After the movement of a user, it should be
recalculated. After repeating the procedure, finally, we can get the
relationship between whole markers on the ceiling.

Practically, if we calculate the pose relationship to one origin,
errors are increased according to the distance. Thus, we need to
have accurate camera calibration and optimization method using
geometry to calculate the pose relationship. However, the
optimization method, such as bundle adjustment, is too expensive
and hard to implement, thus we introduce very simple and robust
method to select good transformation matrix quickly [12].

We assume that each marker on the ceiling has parallel normal
vectors. Thus, we use a dot product value of each marker as a
threshold. The algorithm of determining good transformation
matrix of two markers is as follows:

Step 1: Determine the initial threshold value τ
Step 2: Get the camera poses of each marker, A and B
Step 3: Calculate the relative transformation between two
markers, TAB as shown in Figure 4
Step 4: Calculate dot product of normal vector of A and B:
dot(nA, nB)
Step 5: If dot(nA, nB) > τ , then go to Step 2. else go to step 6.
Step 6: Save the transformation matrix

Move tracking camera to neighbor marker
Update τ & Go to step 2

2.4 Interaction with hand gestures
We utilize user’s hand gestures with the marker attached on the
back of user’s hand in order to support intuitive, various, and
stable interaction methods. Since the marker is always visible
when a user tries to interact with virtual objects, we can combine
hand gestures with markers information to provide various
interaction functions. We choose the distinct gestures which is
very easy to be determined by their shape. Each hand gesture and
its function are shown in Figure 5.

(a) (b)

(c) (d)
Figure 5. Object control gestures (a) Start/Resume the game
(b) Select/Move augmented objects (c) Pause the game (d)
Show the game minimap on the screen

Tracking of hand region is done by tracking the interaction
marker attached on the back of user’s hand. Based on the tracked
marker information, we apply heuristic factor to determine search
window including user’s hand region. After determining search
window, we perform hand segmentation using HSV color space.
And then, we determine contour of hand to count convex and
concave points. Finally, we determine the function of user’s
gestures. For example, if a user makes V posture as shown in
Figure 6, then the number of concave points should be two and
the number of convex points should be one. Simple procedure of
determining interaction function is shown in Figure 6.

Subtract hand area

Get convex/concave pointsGet convex/concave points

Determine search windowOriginal view

Determine function

Show the game minimap

Figure 6. Simple method to combine user's gesture
information with interaction functions

3. Experiment
3.1 Experimental Setup
We used a Flea camera for vision-based tracking. The Flea
camera adopted IEEE1394 interface, and CCD cell from SONY
[9]. And it supports 640×480 size image with 60 frames per sec
(fps). It attached on the rigid body hat for the convenience, as
shown in Figure 7. We assume that an HMD and the flea camera
attached on the hat strictly, so that it guarantees same movement
regardless of user’s head movement. We can apply various kinds
of lenses to Flea. We adopted 6mm camera lens after considering
the height of the ceiling. We used a Trivisio video see-through
HMD to get mixed user’s view [13].

Tracking camera

Multiple markers

Laptop computer

HMD camera

(a) (b) (c)

Figure 7. Experimental equipments for a user (Tracking
camera, an HMD camera, Laptop computer) (a) front view
(b) side view (c) a user is playing the ARPushPush
Figure 8 shows the experimental room environment and marker
arrangement. When a user plays ARPushPush, the user’s view
direction is often close to the floor. Thus, considering that

situation, we made tracking camera be tilted around 10 degree so
that its direction is orthogonal to the ceiling when a user looks at a
floor.

We attached 60 markers on the ceiling. The size of a marker is
100mm×100mm. And the height of the room is 3.0m.

Figure 8. Multiple markers attached on the ceiling for
tracking user’s head pose
PointGrey’s Flea depends on the driver of manufacturer. Thus, we
modified existing ARToolKit to develop our proposed system.
We used Microsoft Visual C++ 6.0 with ARToolKit 2.65 and
OpenCV beta 4.0 [10].

3.2 Experimental Results
We performed multiple markers training explained in section 2.3.
We set the initial threshold value to τ = 0.99. Reconstructed and
saved multiple markers are shown in Figure 9.

(a)

(b)

(c)

(d)

Figure 9. Training of multiple marker and reconstructed
multiple markers (a) after saving trained markers, we
augmented simple white objects (b) (c) (d) multiple markers
stored as a file are rendered using OpenGL
From the scene of rendered markers, we can know that errors are
slightly increasing according to distance from the reference
marker.
We analyzed the results of training method of multiple markers.
As shown in Figure 10, when we used the normal vector

constraint, we got better results than we used no constraint.
Normal vector error, Y axis of Figure 10, is defined as follows.

　)(1 21 nnerrorvectorNormal ⋅−= 　 (8)

where, n1 and n2 is the neighbor normal vectors.

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Marker ID

N
or

m
al

 v
ec

to
r e

rr
or

Normal vector constraint
No constraint

Figure 10. Results of multiple markers training using normal
vector constraint
To show the usefulness of the proposed system, we took a
usability test on immersion with 9 volunteers. Table 1 shows the
results of quantitative measurement of immersion reducing factors.
5 reducing factors were investigated when users were playing the
ARPushPush.

Table 1. Quantitative measurement to analyze immersion
reducing factors, average and standard deviation

Immersion reducing factors
Average

(Max = 5)
STD

Unstable augmentation 4.2 0.8

Unreliable interaction 2.4 0.7

Low frame rate 4.5 0.5

Unrealistic augmented objects 1.6 0.7

Lack of feed-back method 1.6 0.7

Volunteers pointed out unstable augmentation and low frame rate
as the strongest factors which reduce immersive feeling. Even
though we trained markers well, light condition and sparse
distribution of markers made unstable augmentation according to
user’s fast head movement. And volunteers were more sensitive in
visual factors than the other factors.

4. Conclusions and Future works
In this paper, we proposed a vision-based AR system designed for
entertainment applications in indoor environments. The system
used vision-based tracking method and user’s hand gestures to
interact with augmented objects. We brought the popular game

PushPush into AR environment. The proposed framework
provided seamless augmentation through letting markers out of
user’s view and convenient interaction scheme to manipulate
augmented objects with natural hand gestures. And we introduced
very simple and fast algorithm to calculate relationships between
multiple markers. In the experiment, we showed that our training
method reduces normal vector errors effectively. It can be easily
applied to various AR applications. As remaining works, we have
to improve accuracy of vision-based tracking in order to provide
stable augmentation results to users. And we will apply 3D vision
techniques with 3D HMD to provide more realism to users.

5. REFERENCES
[1] R. Azuma, “A Survey of Augmented Reality”, Presence:

Teleoperators and Virtual Environments 6, 4, 355 – 385,
August. 1997

[2] E. Foxlin, and N. Leonid, “VIS-Tracker: A Wearable Vision-
Inertial Self-Tracker”, IEEE Virtual Reality, Los Angeles,
Mar. 2003

[3] M. Engeli, R. Galantay, and J. Torpus, “living-room
Interactive, Space-Oriented Augmented Reality”, ACM
Multimedia, MM’04, New York, USA, October. 2004

[4] W. Piekarski, B. Avery, B. H. Thomas, and P. Malbezin,
“Integrated Head and Hand Tracking for Indoor and
Outdoor Augmented Reality”, IEEE Virtual Reality
Conference, Chicago, Il, Mar. 2004

[5] Y. Nakazato, M. Kanbara, and N. Yokoya, "Discreet
markers for user localization", IEEE International
Symposium on Wearable Computers, p.172-173, Nov. 2004

[6] B. Thomas , B. Close , J. Donoghue , J. Squires , P. Bondi,
M. Morris, and W. Piekarski, “ARQuake: An
Outdoor/Indoor Augmented Reality First Person
Application”, IEEE International Symposium on Wearable
Computers, p.139, October. 2000

[7] F. Dornaika, and R. Chung, “Stereo geometry from 3D ego-
motion streams”, IEEE Transactions on Systems, Man, and
Cybernetics, Part B 33(2), p.308-323, 2003

[8] Z. Zhang, “Flexible camera calibration by viewing a plane
from unknown orientations,” International Conference on
Computer Vision, vol. 1, pp. 666-673, 1999

[9] Point Grey Research Inc., http://www.ptgrey.com, 2002
[10] Intel OpenCV Library, http://www.intel.com/research/

mrl/research/openCV
[11] ARToolKit Library, http://www.hitl.washington.edu/

research/shared_space/download
[12] R. Hartley and A. Zisserman, “Multiple view geometry in

computer vision”, Second edition, Cambridge University
Press, March 2004

[13] Trivisio Company, http://www.trivisio.com

