
Playing with the Real World

Paul Holleis, Matthias Kranz, Anneke Winter, Albrecht Schmidt
Research Group Embedded Interaction

Amalienstrasse 17
80333 Munich, Germany

{paul,matthias,anneke,albrecht}@hcilab.org

ABSTRACT
In this paper we provide a framework that enables the rapid
development of applications using non-standard input de-
vices. Flash is chosen as programming language since it can
be used for quickly assembling applications. We overcome
the difficulties of Flash to access external devices by intro-
ducing a very generic concept: The state information gener-
ated by input devices is transferred to a PC where a program
collects them, interprets them and makes them available on
a web server. A Flash component can now access the data
that is stored in XML format and directly use it in the ap-
plication. This component can be easily integrated into any
Flash application.

Keywords
Design, Experimentation, Human Factors, Pervasive Com-
puting, Input Device, Sensors, Game Controller, Playful
Computing

1. INTRODUCTION
Gaming is and always was ubiquitous and pervasive: chil-
dren play card games on long travels in the back seat of the
car, teenagers use their high-end personal computers and
business people play with their highly sophisticated mobile
devices - as is stated in [6] killing time is the killer applica-
tion and gaming certainly is designated for this purpose.

In this paper we present a general concept for rapid pro-
totyping games that reach out in the physical world. Our
focus is on non-standard input techniques using physically
embedded controllers. We concentrate on prototyping de-
vices beyond mouse and keyboard as we think that special
purpose devices are much more interesting and suitable to
gaming.

We provide a general architecture for communication be-
tween input and output devices and applications using ex-
isting standards and protocols. The data, especially sensor

data, representing the physical states of the input device is
transferred to a server where it is made available to appli-
cations. The actual sensor data is provided in human read-
able form coded in XML. The server is a lightweight web
server that can be accessed via the HTTP protocol which is
available in a great variety of programming platforms and
languages.

On the gaming application side, we demonstrate the in-
tegration in Macromedia Flash. This multimedia author-
ing tool and the programming language ActionScript of-
fer great flexibility and possibilities to integrate all kinds
of media (sound, graphics and movies). This platform has
also been widely accepted for small-scale applications, es-
pecially games. We therefore provide a Flash component
that entirely hides the complexity of the data retrieval, pre-
processing and transfer to the application. The Flash pro-
grammer can easily and directly access the values delivered
by the input device as local variables. No special knowledge
of the input device like design, electronic layout or hardware
used, is needed by the application programmer. These facts
are completely hidden and shielded.

The main structure of the paper is as follows: We first mo-
tivate the need for novel input devices in Section 2 where
we also discuss some input and output modalities. The
Flash component is presented in detail in Section 3. We
present the implementation of the surrounding architecture
that communicates between raw sensor values of the input
device and the applications that are going to use them in
Section 4. In Section 5 we finally show some example pro-
grams which we have implemented to test and evaluate the
system.

2. PROGRAMMING BEYOND THE DESK-
TOP

The focus of traditional programs and especially games has
primarily been on running these applications on standard
desktop computers, mobile devices, and game consoles. Such
devices unified input and output (e.g. in the case of a stan-
dard PC mouse, keyboard and screen). Even with the emer-
gence of multi-player games and later on internet based on-
line gaming platforms the computer screen and speakers re-
main the only output devices (besides force feedback con-
trols) and mouse, keyboard and joystick are still the domi-
nant input devices used.

From this perspective we see a large potential for the de-



velopment of ubiquitous gaming devices. We think that this
area is another fertile field of research which can benefit from
rapid prototyping. In recent works on ubiquitous gaming,
novel interaction devices like a torche [3], a flying jacket [8]
or a cushion [9] are proposed.

We contribute to this by providing a generic architecture
and implementation for connecting novel and non-standard
input devices with applications.

2.1 New Input and Output Devices
The computer domain has been largely dominated by sys-
tems with a relatively large display, capable of showing (fast
moving) high-resolution images in full color and spatial sound
output of high-quality. On the input side a wide range of
game controllers and pointing devices are available. Most
of them are very similar in function and handling. The key-
board is still the standard way to enter text and the mouse
plays a major role in interacting with different parts dis-
played on the monitor.

More recently camera based approaches have been intro-
duced as generic controllers for games. The Sony EyeToy,
e.g., allows interacting in the physical space with games on
a Playstation 2 [11].

Input Devices
Since the invention of the computer mouse, developed in
1970 by Douglas Engelbart [1], a great varity of input devices
has been developed. Most input and interaction devices are
not as general as the mouse and hence they are of great
value in specific domains.

Recently a focus is on interacting by directly observing the
movements or gestures of a user and translate them into in-
teraction events. However, this kind of processing needs ei-
ther an augmentation of the user’s environment or the users
themselves. Examples are presented in [13],[5] and [7].

Our approach differs from this in that we augment exist-
ing objects or appliances that people have already got used
to and know their affordances. We then aim for an easily
understandable way of translating interaction with these de-
vices into actions and events interpretable by applications.
By matching the affordance of the object with the interac-
tion to perform, we can be sure that users will quickly be
able to start using the application in the intended way.

For enhancing existing appliances, we identified several dif-
ferent types of sensors that can be cheaply bought and easily
integrated:

• Accelerometers: Can be used to detect orientation
along their respective axes and (in some restricted way)
rotational as well as translational (quick) movements.

• Gyroscopes: Can be used to detect absolute angle
with respect to earth’s magnetic field and relative ro-
tational changes in a horizontal plane.

• Pressure Sensors: Can be used to sense whether
users hold or squeeze a device in their hands, put it

Figure 1: Visualization of the basic architecture.

into a pocket or exert pressure to initiate some action,
etc.

• Light Sensors: Can be used to decide whether a de-
vice is put in some bag or left outside; can also give
information on the time of day and the type of envi-
ronment the user is in.

• Distance Sensors: Can be used to measure the space
between two objects or the user and an object.

This is by no means an exhaustive list as there exist many
more types of sensors (temperature sensors, microphone or
more general sonic sensors, etc.). However, the sensors listed
above prove to be interesting in our experiments for creating
engaging and animating input devices. In many ways users
can interact with devices like a cube or a chair. This can
easily be detected and interpreted.

We will show in Section 4.1 how we use a subset of the
mentioned sensors to capture movements of interest of a
user on a augmented IKEA balance cushion ([9]).

Output Devices
On the other end of the application, we observe the trend
to use more and different types of screens and displays for
output depending on the type of data that is to be visualized.

We also do not narrow the term output devices to mere
visual screens but also include various means of output de-
vices, e.g., for tactile or haptic output. Simple occurrences
of showing a one bit state can include, e.g., LEDs or switch-
ing on and off any appropriate appliance.

Particularly interesting seems to be to use a combination
of distributed large public displays placed at various points
of interest in the environment and small private displays
visible only to a specific user or group of users. Such forms
of multi-display game environments have been suggested in
[4].

From an architectural point of view we treat sensors and
actuators similar as will be shown in Section 2.2.

2.2 Basic Architecture
As is shown in Figure 1, the application is strictly sepa-
rated from any issues regarding sensor or actuator hardware.
There is a clear interface to access the different devices. A
realization for that (indicated by the cloud in Figure 1) will
be presented later in Section 4. An application needs to
send information to output devices and receive information



from input devices. Communication in these two directions
is aided by two helpers, namely the Sensor Server and the
Actuator Server. They are similar in structure in that they
have one or several registered devices with which they com-
municate. The Sensor Server for example collects data from
all sensors known to the component. This information can
then be queried and used by the application. The Actuator
Server on the other hand has a list of actuators, i.e., displays,
lights, etc. The application is then granted access to those
via the communication layer according to the capabilities of
the respective device.

Of course, it is neither needed nor sensible that every sensor
sends its data to the Sensor Server by itself. In most hard-
ware platforms, those will be collected and sent by a central
component. On the other hand, this approach allows an
arbitrary number of sensors / actuators in the environment
to be used without needing any sophisticated knowledge in
hardware or communication protocols.

2.3 Abstraction from the Hardware
To accomplish the design goal described in the last section,
we must provide an abstraction from the available hard-
ware. Especially to enable application developers and de-
vice builders to easily integrate their products into the ar-
chitecture. In particular we want to ease the job for people
building and integrating hardware components and for game
application developers.

2.3.1 Support for Sensor and Actuator Device De-
velopers

The first thing to build a new interaction method in the
sense we use it is to search for a suitable device and then
decide upon which sensors can be integrated. Subsequently
these sensors have to be connected to some hardware plat-
form like Smart-Its [2] or Particles [12] that supports re-
trieving the data, maybe combine them and send out the
information.

The task of a device developer is then to enhance the Sensor
Server to receive the data and make it available through a
clean interface. Similar actions apply to new actuators. Ba-
sic functionality must be provided to be able to control the
device. For displays this may include writing text, drawing
lines and displaying images, for others it might only mean
specifying some color or switching them on or off. The im-
plementation of these methods will of course again benefit
from an abstraction mechanism that hides the need of send-
ing sequences of high and low voltages and offers, e.g., access
to each pixel.

2.3.2 Application Programmer
Somebody who wants to develop a game or some other kind
of application does not want to have to care at all about
hardware details, communication protocols etc. Ideally, he
or she does not even need to pay attention to the type of
input or output device. Much research is currently done
on automatically adapting content to be able to display it
equally well on a desktop PC, a smaller PDA display and
on a mobile phone. Similarly, using different kinds of input
devices that provide the same amount of information and
therefore can be interpreted in a similar way should be in-

terchangeable. In our example application (see Section 5.1)
the game can be controlled by a new interaction device or
by a standard keyboard.

We are therefore hiding as much of the hardware details as
possible from the developer providing him or her with an al-
ready abstracted interpretation of raw sensor values. As an
example, consider a simple ball switch and an accelerometer.
The first is either 0 or 1, depending on the way it is placed.
The accelerometer can convey exactly the same information
when used appropriately. However, the developer will prob-
ably not be able to decide that so quickly. Therefore, there
will be an abstraction and the developer can build on a set
of small events and does not need to cope with raw sensor
values if not needed.

2.4 Middle Layer
To be able to get this kind of architecture, a middle layer
is needed that is responsible for providing easily accessible
interfaces to the application and sensor sides as well as man-
aging the communication between them.

We draw heavily on available standards to ensure that the
largest possible number of applications can be used and that
the learning effort for developers is minimized. As is de-
scribed in more detail in Section 4.2 where our implemen-
tation of the layer is shown, we currently favor XML as the
data wrapping format as it can be easily validated against,
is human readable and parsers exist for most applications
and programming languages.

As protocol to access the data, one of the most widely
supported formats is HTTP. Nearly all applications or lan-
guages that allow some kind of external access are capable of
reading web pages. The infrastructure needed can be found
nearly everywhere and it is particularly easy to create small
viewers for prototyping and testing devices.

3. REAL-WORLD-INTERACTION COMPO-
NENT FOR FLASH MX

Our experiences from previous project showed that for ap-
plication developers and designers the integration of non-
standard hardware is extremely difficult. To open up design
options for interaction with the physical world we looked for
a solution to easily integrate novel input and output devices
into a programming and authoring environment.

We chose Flash MX because it is commonly used by de-
velopers and designers. It is suitable for easily and quickly
creating games and other small applications that are acces-
sible using web technology. Beginning with version 2004,
Flash provides an object orientated programming language
called Actionscript 2.0. We therefore created an Action-
script 2.0 component that can be incorporated in any Flash
application by simple drag and drop.

After dragging the component onto the Flash "stage" one
has to configure the component by setting two parameters:
one for a link to the configuration URI and one for the vari-
ables URI on the server - both are described later in more
detail. Afterwards the developer has access to all variables
made available from the component on the main time-line



(called "root-time-line" in Flash).

From there these can be used like every other global variable
for the application semantics. As has been shown in the pre-
vious sections, all kinds of input devices can be imagined.
These produce sensor data in completely different ways. The
Sensor Server is responsible to convert this data into a spe-
cific XML format (see Section 4.2). The converted data
is then available to the Flash application. The application
needs not be running on the same machine or server, it only
needs to know the URI where the XML file is hosted or gen-
erated. Thus, it can read and understand the data from the
server. The information flow is illustrated in Figure 2.

Figure 2: Setup of the Virrig game application.

4. IMPLEMENTATION
In this section we describe the implementation and focus on
sensors. The connection of actuator systems is similar.

4.1 Sensor Hardware Architecture
We have implemented several sensing devices which share
the same basic hardware architecture. The sensors are con-
nected to a micro-controller. The micro-controller is resp-
nsible for basic data acquisition and processing. Via RF
the data is then sent to a base unit that is connected to a
computer in the network.

In one implementation we used the Smart-Its platform [2]
and attached a custom sensor board. The Smart-Its provide
a programmable micro controller (PIC 18f452) and several
analog as well as digital inputs and outputs. Sensor data
can be sampled at frequencies of several hundred Hertz (if
supported by the sensor). The RF sender can send data at a
maximum rate of 14400 bps (including overhead for control,
etc.) enabling even those applications that rely on quick
updates. This data is then transferred wirelessly using a
transceiver of the type Radiometric SPM 2-433-28. At the
PC side, a similar construct is used: Another SPM module
receives the data and communicates it to the PC via serial
line input. From there, it can be processed by software as is
described in further detail in Section 4.2.

In a new implementation we used the Particles, similar de-
vices as the Smart-Its. Particles are developed at TecO,
Karlsruhe [12]. They have the advantage of being much
smaller and having more sophisticated ways of transmit-
ting data (including acknowledgment etc.). This change has
shown one of the strengths of our architecture: since input
devices are separated from processing and the final applica-
tion, it has been very easy to switch to the new platform.
Only the receiving part of the communication server had to
be adjusted. The data is no longer sent over serial input but
in UDP packets.

Independent from that is the actual object that is used as
input device and into which we embed the sensors. We delib-
erately searched for objects that are known to most people
but are not yet used as input devices. In this section, two
out of the many possibilities we found are presented. First,
we used an IKEA balance cushion named Virrig shown in
Figure 3 [9]. It is a flat cushion mounted on a robust hemi-
sphere. Thus, it can be rotated and tilted in all directions.
It is very flexible in use as the user can sit, stand, kneel or
lie on it and it is very robust, too, as it is designed for use
by children. It can be seen as a regular cushion or as a toy
to practice balance.

Figure 3: The Virrig input device shown from the
side.

The digital device we attached inside the hemisphere does
not change the affordance or the physicality of the cushion.
The user still can sit or stand on it as before, and since
we use radio technology for data transmission there are no
cables leaving it, so it can still be tilted and rotated like
before. We show how to use the cushion in an edutainment
application in Section 5.1.

Figure 4: Opened Virrig with the integrated Smart-
It.

Inside the cushion, attached to a wooden plate, there is a
Smart-Its (see Figure 4) with the following components:

• 4 large batteries are used as power supply; this ensures
that the device needs not be opened even for long term
user studies



• 4 ball switches indicate the tilt of the cushion in 8
directions

• a gyroscope that shows relative rotational movements
as well as the absolute rotation of the cushion

• a pressure sensor is used to sense if a user is currently
sitting on the cushion and detect his or her movements

• a radio transmitter sends the data to a receiver con-
nected to the PC

The overall hardware architecture is depicted in Figure 5.

Figure 5: Hardware architecture of the input device.

As another input device, we chose a small appliance that
is mounted at the doors of many offices, lecture halls or
assembly rooms. It shows the current state of the room or
its occupant. A magnetic pin is placed on certain spots of a
ferromagnetic plate to indicate whether the person working
in that room is in, busy, out for lunch, etc. We enhanced
such boards with magnetic switches that recognize where
the button / pin is placed and put a Smart-Its in each of
them that communicate this state to a central receiver. The
application is briefly described in Section 5.2.

4.2 Sensor Server / Communication Server
After having described the parts connected to the input de-
vice, this section goes into details about the PC side of the
system. A Smart-Its equipped with a radio receiver is at-
tached to the PC. The Smart-Its receives sensor data from
the cushion and forwards it to a program called Serial Server
([10]) over RS232 serial line. The Serial Server interprets
all received signals and transforms them into XML format.
This data is then stored on a web server making it available
for any application capable of using the HTTP protocol.

The architecture of the receiver is outlined in Figure 6. As
has already been stated, we believe that providing informa-
tion via the HTTP protocol is one of the best methods to
allow a very high number of different applications as well
as programming languages easy access to this data. The
choice of using XML as storage and wrapping format has
been made in the same sense. A large number of applications
and programming languages inherently support reading and
writing data coded in XML structures. It also enables the

specification of content structure and easy validation of in-
coming data. The part generating sensor values as well as
the application can therefore rely on a specific DTD being
followed by transmitted sensor data. This dramatically re-
duces the complexity of implementing both sides.

Figure 6: Hardware architecture of the receiver.

4.3 Component and Test Application
To explain how to use the Flash component and how to
build applications on top of it we provide a small sample
application that outlines the basic concepts in more detail.
Afterwards, a more sophisticated program is described for
which we plan to undertake user studies to evaluate some
assumptions on the impact of physical interaction in learning
applications.

The component itself requires two input parameters: the lo-
cations (URIs) of the XML configuration file and the XML
variables file. The XML configuration file specifies the vari-
ables for faster parsing in the Flash application. The com-
ponent reads the file so it can name and initialize variables
and set an interval for the reload rate.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE eventlist SYSTEM "configuredtd" >
<config>
<interval>

<min unit= "sec" value="1" />
<max unit= "sec" value="3" />

</interval>
<vars>

<var name="rotation" startvalue="0" type="integer" />
<var name="left" startvalue="0" type="boolean" />
<var name="right" startvalue="0" type="boolean" />
<var name="up" startvalue="0" type="boolean" />
<var name="down" startvalue="0" type="boolean" />

</vars>
</config>

Tag Tag Explanation
<interval> minimal and maximal sensor

refresh rate in seconds
<vars> block with available variables
<var> names, start values and types of

the variables delivered by the sensor
input device

XML Variables File: This file delivers the sensor data to the
application. Only the variables that have different values



from the last update appear so that the component does
not need to read all the variables each time. This renders
the Flash application notably faster and also reduces traffic.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE eventlist SYSTEM "variables.dtd" >
<changedVars>
<var name ="rotation" value="30" />
<var name ="left" value="1" />

</changedVars>

Tag Tag Explanation
<changedVars> variables whose value changed
<var> names and values of the variables

delivered by the sensor device

When the application starts, the first thing for the com-
ponent is to analyze the configuration file, to set up and
initialize the variables and to set the minimum and maxi-
mum interval for reading the XML variables file. Then the
application starts reading the variables for the first time.
From now on it reads the variables file as often as defined
by the minimum interval in the configuration file. It sets the
received variables onto the "root-time-line". That process is
repeated as long as the application is running. This is also
shown in the activity diagram in Figure 7.

After programming the component we implemented the first
test application. This application visualizes movements made
by the Virrig cushion. The application shows the cushion
in the center of the window and indicates tilt and rotation.
All possible movements of the input device are shown on
the screen. A screen dump of the application is shown in
Figure 8. The green ball in the middle represents the Vir-
rig cushion. The arrow (black triangle in the top right in
Figure 8) indicates the rotation sent from the sensor device.
The tiny black lines around the ball show, if painted red,
the activated ball sensors. The text window on the right is
an output window for testing and tracing the correct func-
tionality of the component.

5. SAMPLE APPLICATIONS
In this section we introduce some applications based on the
introduced architecture demonstrating the feasibility of our
approach.

5.1 Virrig Race Game
The Virrig Race Game is a game application with the sensor
cushion as physical controller. It is a mixture of car race and
learning program, i.e. an edutainment application. The car
is controlled by the cushion. Since the expected audience
will be primary school children, the whole design is aimed to
be interesting for smaller kids. Depending on the complexity
and type of the questions, the game is also fun and a nice
learning experience for people of each age.

The user interface has been designed as follows: First the
user chooses the mode to play: using the Virrig or the key-
pad as input device. This choice is confirmed by either

Figure 7: Activity diagram of the Flash component.

Figure 8: Screen dump of the test application.

pressing the space bar or by tilting forward (see Figure 9
for a screen dump of the startup screen). The user controls
the car by tilting the cushion forward and backward to ac-
celerate or brake and left or right to go in that direction,
respectively (see Figure 10). There are stop signs on the
crossings where the car automatically stops when you ap-
proach them. A window then appears displaying a question
(see Figure 11). Here the user chooses one answer by rotat-



ing the Virrig. The user commits the choice by clicking, i.e.
tilting forward. One could also think of realizing the clicking
by hopping on the cushion as a load sensor is placed directly
under the user in the inner part of the cushion.

Figure 9: Start screen of the game application.

Figure 10: Screen dump of the game application.

The user can continue driving after giving a (potentially
wrong) answer. If the answer was wrong, the sign gets trans-
parent until he or she has answered another question. So the
memory effect is not that serious but imposes at least some
pressure on the user who can now try to answer it again.
If the question was answered correctly this time, the sign
disappears. After all signs have disappeared (i.e. all cor-
rect answers have been given) the race has been successfully
completed. It could be imagined to display a score board
showing the 10 fastest users or those with the least number
of wrong answers.

5.2 Further Applications
Another application visualizes the occupation of rooms in a
building, e.g. if the room is used for a meeting, a lesson or
is empty (see Figure 13). The natural choice for controlling
such an application is an input device situated at the en-
trance to rooms. This device is very intuitive to use since

Figure 11: Screen dump of the quiz window.

a simple version of it can already be found at many office
doors. It is a board with switches that are activated by mag-
nets (see Figure 12). The state of a room is set by putting a
magnet on the sensitive area of the Hall-effect switch. This
data is wirelessly transmitted per room to the Serial Server.
The server collects the information of each room and the
application get this information from a specific IP and port
from the HTTP server.

Figure 12: Screen dump of the room occupation sys-
tem.

6. CONCLUSIONS
In this paper we have introduce an approach that helps pro-
totyping physical interaction. Our focus is on the support
for games. The examples given concentrate on physical in-
put devices and their integration into Macromedia Flash
MX. The abstractions provided aim at easing the task for
hardware developers and game developers alike by providing
a suitable middleware.

By encapsulating the access to physical devices into a com-
ponent in Flash we see that implementations become much
simpler. Providing sensors and actuators as variables makes
their physical distribution transparent to the developer. The
simple way of exchanging the information via XML and
HTTP makes new developments very simple as developers



Figure 13: Picture of the Room Occupation System
user interface.

can use libraries already available.

For some gaming domains the proposed solutions has re-
strictions as the time delay between the occurrence of a ma-
nipulation in the real world and availability of the data in
Flash can take up to 200ms. But even given this time delay
games that need "immediate" reaction can be prototyped
with the infrastructure described.

Currently we are preparing a version of the Virrig Race
Game to perform a user study with children. In future work
we want to qualitatively and quantitatively assess the ad-
vantages of physical controls for edutainment systems.

7. ACKNOWLEDGMENTS
The work has been conducted in the context of the research
project Embedded Interaction (’Eingebettete Interaktion’)
and was funded by the DFG (’Deutsche Forschungsgemein-
schaft’).

8. REFERENCES
[1] D. Engelbart. X-y position indicator for a display

system. U.S. Patent # 3,541,541, http:
//sloan.stanford.edu/MouseSite/1968Demo.html.

[2] H.-W. Gellersen, G. Kortuem, M. Beigl, and

A. Schmidt. Physical prototyping with Smart-Its.
IEEE Pervasive Computing Magazine, 3(3):74–82,
July–September 2004.

[3] J. Green, H. Schnädelbach, B. Koleva, S. Benford,
T. Pridmore, K. Medina, E. Harris, and H. Smith.
Camping in the digital wilderness: tents and
flashlights as interfaces to virtual worlds. In CHI ’02:
CHI ’02 extended abstracts on Human factors in
computing systems, pages 780–781. ACM Press, 2002.

[4] C. Magerkurth, M. Memisoglu, T. Engelke, and
N. Streitz. Towards the next generation of tabletop
gaming experiences. In GI ’04: Proceedings of the
2004 conference on Graphics interface, pages 73–80.
Canadian Human-Computer Communications Society,
2004.

[5] C. Metzger, M. Anderson, and T. Starner. Freedigiter:
A contact-free device for gesture control. In ISWC ’04:
Proceedings of the Eighth International Symposium on
Wearable Computers (ISWC’04), pages 18–21. IEEE
Computer Society, 2004.

[6] J. Nielson. Killing time is the killer application.
TheFeature: It’s all about the mobile internet, http:
//www.thefeature.com/article?articleid=8183,
2000.

[7] J. Rekimoto. Gesturewrist and gesturepad:
Unobtrusive wearable interaction devices. In ISWC
’01: Proceedings of the 5th IEEE International
Symposium on Wearable Computers, page 21. IEEE
Computer Society, 2001.

[8] Y. Rogers, M. Scaife, E. Harris, T. Phelps, S. Price,
H. Smith, H. Muller, C. Randell, A. Moss, I. Taylor,
D. Stanton, C. O’Malley, G. Corke, and S. Gabrielli.
Things aren’t what they seem to be: innovation
through technology inspiration. In DIS ’02:
Proceedings of the conference on Designing interactive
systems, pages 373–378. ACM Press, 2002.

[9] A. Schmidt, P. Holleis, and M. Kranz. Sensor virrig - a
balance cushion as controller. UbiComp 2004 -
Workshop ’Playing with sensors’, 2004.

[10] A. Schmidt, M. Kranz, and P. Holleis. Research Group
Embedded Interaction Serial Server Project.
http://www.hcilab.org/resources/webserver.htm.

[11] Sony. Eye-Toy. http://www.eyetoy.com.

[12] Telecooperation Office, University Karlsruhe (TH).
TecO Smart-Its Particle Project.
http://particle.teco.edu/.

[13] A. Vardy, J. Robinson, and L.-T. Cheng. The
wristcam as input device. In ISWC, pages 199–202,
1999.


