
Exploiting Context Histories in Setting up an e-Home

Johannes Helander
Microsoft Research

1 Microsoft Way
Redmond, WA 98007 USA

+1 425 882 8080
jvh@microsoft.com

ABSTRACT
Turning a home into a seamlessly integrated, yet secure
environment, without excessive cost, presents a number of
challenges. This paper attempts to draw various solutions
together. What must be done for security, can also be
exploited in making configuration less tedious.
The home environment is augmented by low-cost invisible
computers that let everyday objects communicate and
integrate. Embedded XML web services are used as a
generic substrate for exchanging information between all
classes of devices: simple light switches to complex
personal computers. Solid cryptography and a touch based
trust establishment protocol allow setting up a secure home
completely independently. Finally the human interaction
context history is used to heuristically determine how the
different devices should interact.

Keywords
Home automation, XML web services, embedded systems
security, context histories.

INTRODUCTION
An automated home can make our lives more comfortable
and easier, perhaps lengthening the time the aging
population can stay independent. Countless homes are
already filled with personal computers, music systems,
appliances, light dimmers, and security systems. If all these
systems could work together the utility of all the devices
would improve.
There are two main problems in the status quo, however. 1)
The systems are difficult to set up and it is impossible to
make them work together. Beside the physical connections,
that often could be replaced by wireless connections, the
protocols spoken are proprietary and application
dependent. The user is relegated to archaic switches and
menus to tell the systems what to do. A seamlessly
integrated home is currently achievable only for
millionaires with professional installation crews. 2) The
systems are insecure and compromise the privacy of the
inhabitant. By installing automation systems the owner of
the home ends up paying

for losing control of information pertinent to their sanctum.
The use of wireless connections only makes the situation
worse.
The author claims that interoperation has to be built right
into the basic functionality of the system. Security and
privacy is not an afterthought and should not make the
system another order of magnitude more complex and
difficult to set up. The user experience must be intuitive
and natural, preferably completely invisibly result from the
unavoidable physical installation without further
configuration steps.
This paper proposes a physical touch based functional and
trust establishment mechanism that exploits a contextual
history of human interaction. Interoperation is achieved
through the use of XML Web Services that run on low cost
microcontrollers. A public key cryptography based trust
manager achieves security without external trust
authorities. The trust setup is based in physical touch; as a
side effect a context history is created. This context history
is exploited to determine functional relations between the
devices. A single touch per device is thus all that is needed,
and this applies potentially to all the devices in the home

EMBEDDED XML WEB SERVICES
Web services were conceived to solve the e-business
interoperation problem. The same problem is very pressing
in a home environment. The author has shown in [1] that
web services can also perform on low-cost
microcontrollers. Entertainment content streaming and
privacy add new issues, the use of web services in
addressing these issues have been explored in [2] and [3].

TRUST ESTABLISHMENT
A home should be totally controlled by the owners. The
owners should also be able to set up their home without
outside assistance or authority. This is achieved in [2] by
using the Resurrecting Duckling Protocol [5]. It works by
defining one device to be the authority—the mother. New
devices believe the first other device they see is their
mother unless they already have one. The first contact is
thus critical and a touch (or proximity) based channel is
used. The physical touch signifies a human intent and
physical access to the mother device. Each device is
identified by a certificate that contains the public key of the
device, delivered over the physical touch channel. The

<interaction time="2005-02-21T18:25:00Z" type="touch">
 <function type="light" subtype="torchier" power="100" unit="watt"/>
 <location="floor" height="1.5" unit="meter"/>
 <watch-buttons>1 2</watch-buttons>
 <contact id="uuid:7796f8ac-ab60-49e5-a2e7-61db77e64096"
 url="http://123.45.67.89/discovery"/>
</interaction>
<interaction time="2005-02-21T18:26:00Z" type="touch">
 <function type="light-switch" subtype="lever" values="on off"/>
 <location="wall" height="2" unit="meter"/>
 <contact id="uuid:1a0e6bd0-806f-4bd8-8e93-c0afd97b1044"
 url="http://234.56.78.90/discovery"/>
 </interaction>

certificates are signed by the mother with its private key.
The mother certificate is received on the same physical
touch channel. All later communication can happen on a
regular wireless or other public data link.
There is no need for central certificate authority outside the
home. [2] shows how independent authorities can federate
to manage mutual partial trust.

CREATION OF THE CONTEXT HISTORY
As the creation of the home trust domain and admitting
devices into it involves human interaction, the precise
pattern of that interaction can be recorded. A single
instance of interaction is a context event.
When new devices are brought into the home, they are
touched by the mother, e.g. a smart watch, to make them
part of the family. It is also possible to touch a device at
other times at will.

REPRESENTING CONTEXT EVENTS
A context event, like any data, is represented as an XML
fragment. The fragments are collected by the watch and can
be sent to any interested and trusted parties based on event
subscription.

The context event contains the type of the device and its
functions as well as how to contact it. Beside the time, the
event contains the location to the extent known and any
available information of what the user did, such as buttons
pressed at the time of the interaction. The log is
conceptually stored in a distributed data base, where it is
available for queries and data mining.

EXPLOITING THE CONTEXT HISTORY
Once a context history is available, the device uses it to
determine what it is supposed to do and what other devices
it should be associated with. The choice is constrained by
the trust domain. Untrusted devices are simply ignored,
although federation of trust domains enables limited cross-
domain interaction.
The primary source of information is the timestamp in each
event. Those events that are close to each other temporally
can be assumed to be related. Since the pace of user
interaction depends on the speed of the user and on the
proximity of the devices, an absolute time difference would
be inappropriate. Instead a statistical clustering algorithm is
used. First obvious (multiple hours) gaps are used to

partition the history into sets. Next every interval is
examined and a normal distribution is calculated for a set.
The set is then separated into multiple subsets by picking a
threshold value for the deviation. The largest deviation
gaps are used as cutoff points to separate events into
separate subsets. The threshold is progressively lowered
and too large sets are separated into two. This is done until
every set is of reasonable size (<= 5). Finally it is
determined that each of the smaller sets is a separate cluster
of related functions.
The clusters are examined for compatible functions such as
a light and a light-switch. Compatible functions are then
linked together. Simply put, the relative temporal proximity
of two compatible devices determines their functional
relationship. If no compatible functions are found, the
proximity requirement is loosened by backtracking the set
splitting until some useful relationships are found.
When location is known, it used together with the temporal
proximity to determine overall proximity by mixing
temporal and spatial proximity together with heuristically
determined weights.

The result of the functional (partitional) clustering is that
the light-switch ends up controlling the light given that
they were both touched in a reasonably close time span.
If desired, the user can control the process to indicate that
the clustering should be split at a given point. For example,
pressing button 2 on the watch while touching a device
could signal that the current device has nothing to do with
the previous devices. This could be done when moving
from one room to another without a break in between.

RESULTS
The secure embedded web services and the resurrecting
duckling protocol that provides the context events were
implemented on a low-end ARM microcontroller [6].
Similar single-chip low-power computers are currently
available for roughly $5.
We evaluate the feasibility of the software and the security
protocol with measurements. Table 1 shows that the entire
software can run on a computer that has 256KB ROM and
32KB RAM. This is available on modern microcontrollers
of interest.

Table 1: Footprint (arm - in bytes) at peak usage
We evaluate whether the solid cryptography is feasible on
low-cost devices. Table 2 reveals that the two significant
costs are key generation and RSA private key operations.
The former only needs to be done, and can be primed at the
factory or on the way home. RSA private key operations
are needed for certificate signing and key exchange. Each
need to be done only once but cannot be done before the
device was touched. Luckily the certificate does not have to
be signed while touching so the interaction itself is quick.
After touching a device but before two devices can
communicate, two RSA private key operations must be
done in sequence. This means that it takes almost half a
minute before the newly associated devices can
communicate to each other, making immediate feedback
problematic. Further work will investigate cutting down
this delay perhaps driven by the mother device.
The clustering algorithm does not contain any complicated
math and can be completely calculated using fixed point
integer arithmetic in linear time. This makes it suitable for
microcontroller use as compared to more elaborate and
sophisticated schemes such as [4] that uses Markov models
and Bayesian networks, where the clustering computation
itself could exceed the available computational capabilities.
The simple clustering algorithm presented here also has the
advantage of working with little stored history, yet
sufficiently addresses the problem requirements.

FURTHER WORK
User studies would be beneficial in determining the best
clustering of events and for tuning the algorithm and for

verifying that the results are those expected by most users.
Further experimentation with exploiting other known
parameters, such as partial locations, might also yield
interesting results.

CONCLUSION
It is possible to create an interoperable home automation
architecture that is both easy to use and affordable without
compromising privacy. Data mining of context histories is
a viable way of extracting information from interactions
that are already necessary for other reasons. This
information, when combined with other known information
provide enough context to avoid tedious configuration
menus and complicated setup steps. The preliminary work
presented in this paper shows that this is possible but user
studies are needed to determine whether the heuristic is
strong enough to produce results intuitive to most people in
variable environments.

REFERENCES
1. Forin, A., Helander, J., Pham, P., and Rajendiran, J.:

Component Based Invisible Computing, 3rd IEEE/IEE
Real-Time Embedded Systems Workshop (London,
December 2001).

2. Helander, J. and Xiong, Y.: Secure Web Services for
Low-cost Devices, 8th IEEE International Symposium
on Object-oriented Real-time distributed Computing
(Seattle, May 2005).

3. Helander, J. and Sigurdsson S.: Self-Tuning Planned
Actions: Time to Make Real-Time SOAP Real, 8th
IEEE International Symposium on Object-oriented
Real-time distributed Computing (Seattle, May 2005).

4. Moore, D, Essa, I., and Hayes, M.: Exploiting Human
Actions and Object Context for Recognition Tasks, 7th
IEEE International Conference on Computer Vision
 (Corfu Greece, 1999).

5. Stajano, F. and Anderson, R. The Resurrecting
Duckling: Security Issues for Ad-hoc Wireless
Networks LNCS 1796, Springer-Verlag, 1999.

6. AT91M63200 Summary, AT91 ARM Thumb MCU,
http://www.atmel.com/dyn/resources/prod_documents/1
028S.PDF

7. The embedded web services implementation is available
at http://research.microsoft.com/invisible/

Algorithm Operation Latency on a 25 MHz ARM 7
 Average Standard deviation Per KB
1024-bit RSA Generate a key pair 290 s 56% N/A
 Private key Encrypt/decrypt a block (128 bytes) 12.9 s <1% 103 s
 Public key Encrypt/decrypt a block (128 bytes) 0.667 s <1% 5.34 s
128-bit AES Encrypt/decrypt a block (16 bytes) 0.254 ms <1% 16.3 ms
SHA1-HMAC 1024 bytes 79.6 ms <1% 79.6 ms

Table 2: Speed of cryptographic primitives

Files ROM Static
RAM

Heap Stack Total
RAM

BASE 24,676 1,940 2,837 2,777
DRIVERS 11,464 332 896 2,288 3,516
TCP/IP 77,024 3,424 2,648 3,400 9,472
XML 7,860 16 88 104
SOAP 29,504 280 996 4,320 5,596
SECProto 14,180 604 1,848 2,648 5,100
AES 16,532 8 8
RSA 9,784 28 24 52
SHA1 5,436 8 8
C-Library 7,620 12 12
TOTAL 204,080 6,652 9,337 12,656 28,645

