
DEMAC: A DISTRIBUTED ENVIRONMENT FOR
MOBILITY AWARE COMPUTING

Christian P. Kunze∗

Abstract. For ubiquitous respectively pervasive computing mobility is one of the most important
aspects. In the past, mobile devices became more and more aware of their location and vicinity and
communicated rather loosely with each other. Therefore, mostly asynchronous communication para-
digms were used in order to decouple temporally message transport.

As such communication mechanisms seem suitable for single communication acts, they may not be
sufficient, however, for more complex tasks which consist of sequences of related communication acts.
This holds particularly if the resulting operating sequence spans several mobile devices in frequently
changing vicinities.

Therefore, the approach taken by the ongoing dissertation project DEMAC aims at a higher abstrac-
tion level for inter-device communication, especially for more complex user tasks. The concept as
developed so far is based on integrating processes into mobile system infrastructures and on distribu-
ting their execution over different nodes in the network. For this purpose, a middleware platform for
context aware applications is designed which allows for defining process schemas and which uses an
interpreter to execute the defined processes in a distributed manner.

1. The Challenges of Mobility in Pervasive Environments

In computer technology in general, two diametrical trends can be identified: On the one hand side
computers become more and more powerful and they decrease in size. On the other side, the amount of
connected items which are equipped with processing units increases continuously and they penetrate
ever more into everyday life [6]. In recognition of this trend, e.g., Marc Weiser formulated his vision
of The Computer for the Twenty-First Century” [9] with the final goal to make computers available
to users at any time and place, but making this access effectively invisible to them [10]

For these ubiquitous environments mobility is one of the central aspects to cope with: Mobile users
travel around and need access to their programs and data from everywhere and at any time. But also
devices are mobile and thus able to form dynamic environments which share data and/or services. And
even the code can move because it may migrate among and be executed on devices which form the
mobile vicinity. However, supporting such mobility aspects on systems level also leads to additional
constraints and demands than in more static distributed systems.

This paper introduces the dissertation project ”Distributed Environment for Mobility Aware Compu-

∗University of Hamburg, Department of Informatics, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany, email:
kunze@informatik.uni-hamburg.de

115



ting” (DEMAC) which aims at developing a middleware infrastructure to support the integration of
mobile devices into classical”distributed environments in order to enable value added and process
oriented applications.

The following subsections of this paper introduce the (broader and narrower) problem domains; sec-
tion 2. addresses related and previous work, and section 3. outlines the DEMAC system software
solution. Finally section 4. concludes this paper.

1.1. Integration of Mobility Constraints

Research in mobile computing has identified four constraints which are intrinsic to mobility but diffe-
rent to traditional distributed systems: These are the restrictions of resources in comparison to static
devices, the increased variability in performance and reliability of wireless connections, the finite
energy sources to rely on, and the hazard of mobility itself. This caused the insight that mobile sy-
stems can not provide as much transparency as systems in more statically wired environments. In
contrast, the moving elements have to be aware of the changing vicinity and to react and adapt accor-
dingly [8].

A first focus of Mobile Computing was on timely decoupling the communication of mobile systems
because there is no guarantee that clients and servers are reachable at the same time. System support
for that lead to middleware systems which mainly used asynchronous communication models - like
message-passing, tuple space based approaches, or sharing of replicated data [5].

A second important aspect of research based on the implications of mobility constraints is the rea-
lisation of awareness and adaptability. These systems introduce the principal of reflection in order
to make changes in the context available to applications. In such systems, the context describes - for
each entity - the pieces of information which specify the situation of the entity and are relevant for
its behaviour [4]. This knowledge can either be presented to the entity proactively by using adequate
events or passively by providing a query mechanism.

In summary: with asynchronous communication and location awareness some restrictions of mobile
clients’ resources can be allayed. Namely, an application can retrieve and use services provided by
other servers in its environment to extend its own capabilities.

However, all these solutions have in common that they solve the problems in mobile environments just
for a single simple task or communication act because they are realised on a relatively low conceptual
level: The decoupling is isolated for single interactions and only works under the assumption that
clients and servers can eventually connect in finite time again.

1.2. The Need for Decoupling on an Abstract Level

Most existing solutions in the field of mobile computing provide their support from an application
point of view. They offer mechanisms and techniques to fulfil basic but rather simple tasks (cp. sub-
section 1.1.). However, to step further to the vision of ubiquitous computing the successful execution
of the users’ (mostly more complex) tasks must come into the focus. For this reason, future approa-
ches to system support for mobile computing should be based on such a more abstract and user centric
view.

116



On this abstraction level, complex user tasks can be regarded as sequences or process of related simple
tasks from the application centric view which are managed by the mobile client. In consequence, a
mobile client must be able to reach and invoke all services which are needed to execute the complex
task. And as another implicit consequence, the client must be capable of handling all intermediate
results - regardless of their size and relevance to the expected final output. This, however, leads to a
single point of failure and a bottleneck during execution time.

If, on such conditions, the mobile device is not constantly reachable while performing a sequence of
remote tasks, the execution time can expand fast and will reach an unacceptable dimension quickly.
As the client has, additionally, to manage the whole control flow of the complex task, the quantity
of possible processes is limited by the capabilities of the mobile device. Since the user, however, is,
in mostly cases, just interested in the effects of a process and not in it’s execution or intermediate
results, the control flow - and with it the complex task - can be transferred to other devices. In such
a case, the user should also be able to specify, next to the execution process, non-functional aspects
like, e.g., security and other quality-of-service needs. These requirements should then be taken into
account by the remote execution unit and enforced on user’s behalf. As this can not be done just using
existing techniques additional concepts are needed on the higher abstraction level of complex user
tasks. These ones should decouple the execution of processes not only in time but also in space.

2. Previous and Related Work

As mentioned before, much research in the field of middleware systems for mobile computing is based
on decoupling the communication of mobile clients and on making them aware of their environment.
Most of these systems provide asynchronous communication paradigms and/or detailed descriptions
of the device’s vicinity. The work presented here uses these results as it is based on message-oriented
middleware systems for Mobile Computing - also integrating parts of context-aware and event-based
mechanisms.

In addition, such a middleware approach can also make use of current web service technology - in
particular workflow definition languages. At present, we analyse if and to which scale the correspon-
ding languages, e.g. BEPEL4WS or XPDL, are also suited for use in system support architectures for
mobile system. The goal here is to find a compatible subset to allow for integrating the mobile devices
seamlessly into existing workflow environments.

Beyond that, this approach has also origins in distributed (multi-) agent oriented computing: For
instance, research done in this dissertation project so far has demonstrated that it is actually possible
to transfer a goal-directed agent system (JADEX) to mobile clients. Although there are, of course,
limitations to the devices size it has been demonstrated in this research, that even for PDA-size devices
such an approach is possible [3]. This leads to options for integrating goals - as described in [2] - as
non-functional constraints and, in particular, to the possibility to deliberate about different strategies
to achieve these goals in the most feasible way which is rather useful for a user centric approach:
Different types of goals like, e.g., achieve, maintain, or query goals, which define the user’s task
more precisely, have a direct influence on the execution of the associated process.

As the middleware support proposed in this dissertation project uses remote services as well as de-
legation of tasks and responsibility in a mobile and distributed environment, there is also a need to
ensure the necessary levels of trust in such remote services, based on, e.g., foreign user roles, and
individual user identities. Therefore, the DEMAC project also includes some research into digital

117



identity management [1] and, as a consequence, identities should become an integrated part of the
context concept of the approach.

Finally, the dissertation project DEMAC is also influenced by previous research in the area of system
support for mobile computing in Hamburg which, in earlier years, proposed and demonstrated the
use of abstraction concepts for the design of adoption and integration strategies in distributed mobile
systems. Also this research indicated that higher abstraction levels lead to fewer device modifications
and easier handlings of heterogeneity [7].

3. The DEMAC Approach

The dissertation project DEMAC aims at including a process oriented perception into middleware
system support for mobile computing. In this context, process orientation means continuing conse-
quently the decoupling of mobile applications. More specifically, introducing an explicit description
schema and an interpreter for distributed processes in mobility aware computing environments allows
for decentralization of the control flow of mobile applications.

3.1. Decoupling via Delegation

The main idea to decouple applications on a higher user centric abstraction level as discussed in
subsection 1.2. is realised in this project by introducing a lean description schema and a distributed
execution mechanism for processes into the middleware approach. This allows for delegation of the
responsibility to perform parts of a complex task to other nodes which can then perform the actual
subtask in a more suitable way. Based on such a spatial and temporal decoupling strategy the control
flow remains close to the service execution unit. In addition, with a late service binding strategy,
the mobile environment is able to support many (parallel) jobs - even if the initiating device is not
reachable or turned off. Such mechanisms do not yet exist in current middleware approaches where
just the data transmission between client and service provider is decoupled by the use of asynchronous
communication techniques.

But since, in a user centric view, the execution is distributed, the application as well as the user
must be able to express functional and also non-functional constraints like, e.g. security needs or
quality-of-service parameters. Decoupling via delegation provides such possibilities to enforce these
requirements on behalf of the user - even remotely - with appropriate security (and other) functions
even on unknown or suspect servers.

3.2. The DEMAC System Architecture Components

As system support for mobility aware computing, DEMAC proposes extensions to an abstract midd-
leware architecture which are based on four services components (see figure 1) which are presented
and described shortly in the following.

3.2.1. Asynchronous Transport Service

The asynchronous transport service forms the communication basis for all services and applications
in the DEMAC architecture. This service abstracts from concrete transport protocols, like TCP/IP,
Bluetooth, or IrDA. On top of these the DEMAC transport mechanism provides the ability to send and
receive messages. As the transport service should work asynchronously, messages are referenced by

118



Abbildung 1. Overview of the DEMAC middleware architecture

unique identifiers and delivered to higher services or applications by using the öbserver pattern”. That
means applications waiting for messages can register at the transport service and will be informed
about incoming messages.

As the service is independent from the transport protocol it uses its own addressing schema. The
used addresses are bound to a device and translated into the concrete protocol specific address by
the transport service. If the device is reachable by different protocols, non-functional aspects like e.g.
quality of service attributes can be used to make an optimal choice.

3.2.2. Event Service

The event service is used to provide announcements of changes in the device’s internal and external
states to the context service. A modification of an attribute in the device, e.g. the loss of a connection
or other quality of service parameter, is transformed into an event and passed to all interested local and
remote clients. If external services should be informed the asynchronous messages of the transport
service are used to notify the remote event service. Receiving such a foreign message the remote
service generates a local event which then is passed to its local context service.

3.2.3. Context Service

The context service collects and maintains all information about the context of the device. It acquires
its knowledge either by events from the event service or by direct message exchange using the trans-
port service. But towards the entities which uses the service it filters and partitions the information
and provides only the amount they need. These are next to quality of service parameters also infor-
mation about reachable devices and their services, location parameter and data about other users and
their identity.

119



3.2.4. Process Service

The process service realises the integration of process management into the DEMAC architecture
and thus the decoupling by delegation discussed in subsection 3.1.. It is comprised of two parts:
The first one is a definition of a schema in order to describe the execution process as well as the
users and applications non-functional demands. Using this schema, an application is able to define a
sequence of services, intermediary results which must be achieved, and constraints for the execution.
Thereby the services are referenced by abstract handles to keep the definition short. The second part
of the service is an interpreter for process definitions. This unit has the duty to resolve and execute
processes. It can either invoke the service locally or delegate the process to a remote process service.
When delegating a process the description and all necessary data is transferred to the remote unit by
the use of the transport service. Thereby the process service relies on the information provided by
the context service to find a device providing the needed service and to enforce the non-functional
demands and constraints.

3.3. State of the Project

The DEMAC project is still in an early state where just the presented abstract architecture and the
correlations and interconnections of single services have been solidified. Now, more detailed research
and specifications for each service and a first prototypical implementation are in progress. After this
basic implementation the system support services will be extended incrementally. In this stage, also
other state-of-the-art middleware techniques shall be considered, especially agent technologies like
goal representation and deliberation to optimise the execution of the user centric process. To get a per-
ception in which scale the agent-oriented techniques benefit such a process oriented middleware for
mobile computing, major parts of an existing (multi-) agent platform has been transferred to mobile
devices [3]. With this implementation the use of speech act communication and deliberation of goals
in mobile scenario is analysed and the results are transferred to the DEMAC middleware approach.
For an example application process, an insurance company environment is used which covers mana-
ging claims resulting from traffic accidents with mobile devices in a remote and distributed fashion.
This scenario could demonstrate major parts of the advantages of the DEMAC architecture because
it spans several mobile users (assessors, insurance agents etc.) and static back office systems like the
insurance company or the garage.

4. Conclusion

This paper argues that existing approaches for mobile computing deal with the limitations of mobile
systems on a communication level which is too low for many (especially complex) user applications.
They basically decouple device communication in time only and support the ability to be aware of the
device’s context. By combining theses techniques, mobile clients may be able to make use of services
provided in their vicinity in a more application adequate ways. However, such device extensions
are only suitable for single communication acts; for sequences of remote service requests, however,
more abstract concepts (and a corresponding system support) are needed. The DEMAC approach as
presented in this paper solves this problem by integrating processes into a mobile middleware platform
and delegating the control flow of the whole remaining process to remote executing units. In addition,
such a delegation can be done recursively such that the execution of the process is consequently
distributed and spatially decoupled from the mobile device. The assumption is that in cases where
users are just interested in the effects of their respective processes they usually do not care about any

120



details of the process execution as long as their functional and non-functional goals are achieved.
This is supported by the DEMAC middleware by integrating non-functional constraints and options
for goal representation into the (traditional) process execution. All this lifts the main perspective
within the approach from a focus on rather basic application support to a more abstract user centric
view in which user’s tasks can be executed in most feasible and cooperative ways.

Literatur

[1] Toby Baier and Christian P. Kunze. Identity-enriched session management. In W. Lamersdorf,
V. Tschammer, and Stéphane Amarger, editors, Building the E-Service Society: E-Commerce,
E-Business, and E-Government, pages 329–342. IFIP, Kluwer Academic Publishers Dordrecht,
8 2004.

[2] Lars Braubach, Alexander Pokahr, Winfried Lamersdorf, and Daniel Moldt. Goal represen-
tation for bdi agent systems. In Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal
El Fallah-Seghrouchni, editors, Proceedings of the Second International Workshop on Program-
ming Multi-Agent Systems, pages 9–20, 2004.

[3] Mathias Harbeck. BDI-Agentensysteme auf mobilen Geräten. Master’s thesis, University of
Hamburg - Department of Informatics - Distributed Systems and Information Systems Group, 9
2004.

[4] O. Lehmann, M. Bauer, C. Becker, and D. Nicklas. From home to world: Supporting context-
aware applications through world-models. In Proceedings of the 2nd IEEE International Con-
ference on Pervasive Computing and Communication (PerCom 04), 2004.

[5] Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich. Middleware for mobile computing (a
survey). In E. Gregori, G. Anastasi, and S. Basagni, editors, Networking 2002 Tutorial Papers,
volume 2497 of LNCS, pages 20–58. Springer Verlag, 2002.

[6] Friedemann Mattern. The vision and technical foundations of ubiquitous computing. Upgrade,
2(5):2–6, October 2001.

[7] Stefan Müller-Wilken and Winfried Lamersdorf. Jbsa: An infrastructure for seamless mobile
systems integration. In Claudia Linnhoff-Popien and Heinz-Gerd Hegering, editors, Proc. 3rd
IFIP/GI International Conference on Trends towards a Universal Service Market (USM 2000),
Lecture Notes in Computer Science, pages 164–175. Ludwig-Maximilians-University Munich,
Springer Verlag, 9 2000.

[8] Mahadev Satyanarayanan. Fundamental challenges in mobile computing. In Proceedings of the
Fifteenth ACM Symposium on Principles of Distributed Computing, 1996.

[9] Mark Weiser. The computer for the twenty-first century. Scientific American, 256(3):94–104,
1991.

[10] Mark Weiser. Ubiquitous computing. IEEE Computer Hot Topics, 1993.

121




