
SCALABLE CONTEXT-AWARE SERVICES

Thomas Buchholz∗

Abstract. Most of the prior work in ubiquitous computing focused on small Context-Aware Services
(CASs). However, there is a trend to build also large-scale applications where many context sources,
CASs, and users are spread over a large area. These kinds of CASs are subject to strong scalability
problems. In my work I show how scalable CASs can be built. The main idea is to dynamically rep-
licate and distribute CASs within the main scalability infrastructure of the world wide web, namely
Content Delivery Networks (CDNs). Unfortunately, today’s CDNs are not able to deliver CASs main-
ly due to two reasons: First, it is not solved how replicas of CASs can access context information
from within the CDN. Second, the distribution algorithms employed in CDNs are not well suited for
distributing CASs.

In my work I address these two issues. I designed an integration layer that resides on the servers of
the CDNs, binds to the heterogeneous regional context sources, and provides context information in a
unified form to the replicas of the CASs. Furthermore, I developed a new heuristics for the distribution
of CASs within CDNs that bases its replica placement decisions on a profit maximization calculation
and uses statistical process control techniques.

1. Introduction

Context-Aware Services (CASs) are applications that use context information to adapt their behavior
or to customize the content they provide. Early research in ubiquitous computing focused on small
applications where the context sources, the CASs, and users are located in each other’s spatial proxi-
mity, and where all entities are administrated by the same organization (see e.g. [7] for a survey). In
such a setting there is no scalability problem.

However, there are large-scale applications where many context sources, CASs, and users are spread
over a large area. Examples for these kinds of applications are context-based push information ser-
vices like friend-finders or dating services, contextualized web pages (e.g. contextualized portals),
contextualized yellow pages like restaurant finders, and server-based navigation systems. These kinds
of CASs are subject to strong scalability problems.

According to [14] the scalability problem can be divided into a numerical (N), a geographical (G),
and an administrative dimension (A). The numerical dimension refers to the number of users, deploy-
ed objects like e.g. context sources and services in a system. The geographical dimension means the
distance between the farthest nodes, while the administrative dimension consists of the number of
organizations that exert control over parts of the system. A large administrative dimension in general
leads to heterogeneity. The various organizations are likely to use different hardware, software, pro-

∗Mobile and Distributed Systems Group, Institute for Informatics, Ludwig-Maximilian-University Munich, Oettin-
genstr. 67, 80538 Munich, Germany, email: thomas.buchholz@ifi.lmu.de, http://www.mobile.ifi.lmu.de/

145



tocols, and information models. [14] defines a system to be scalable if users, objects and services can
be added, if it can be scattered over a larger area, and if the chain of value creation can be divided
among more organizations without the system “suffering a noticeable loss of performance or increase
in administrative complexity.”

The mentioned large-scale CASs have scalability problems in all three dimensions: A single CAS
may be used by many users (N) that are scattered over a large area (G). Collectively, a workload
(N) might arise that is too large for a single server. Since it cannot be predicted from where (G)
a CAS will be invoked and the context sources are often in the user’s region (G), the CAS must
be able to interact with a plethora (N) of context sources. Often many interactions (N) over a long
distance (G) are needed leading to a high user-perceived latency. Furthermore, the context sources
in the various regions may possess heterogeneous access interfaces (A) since it is very likely that
they will be operated by diverse organizations. Thus, service interoperability becomes a problem. The
interoperability problem is classically divided into a signature level, a protocol level, and a semantic
level [21]. On the signature level context sources may differ in the syntax of their interfaces. The name
of the provided operations and the type and sequence of the stipulated parameters may vary. Often
context information needs to be composed by combining context sources sequentially. For example,
first it needs to be found out where a user is located before a service can search for nearby bus stops.
Thus, context sources need to be orchestrated. This interoperability problem is dealt with on the
protocol level. Furthermore, the various context sources may employ different information models.
This means that they use different terms to refer to the same concepts which leads to a divergent
understanding and interpretation. This is the semantic level of the interoperability problem.

2. Approach and Methodology

This work addresses how large-scale CASs can be built. Its key idea is to reuse the major scalability
infrastructure of the world wide web, namely Content Delivery Networks (CDNs) [15]. A CDN is a
platform of globally distributed servers located at strategically important points within the Internet.
CDNs distribute replicas of the content of their customers, which are the large content providers, on
their infrastructure. Client requests are routed to the edge servers that are closest to the client and that
already hold a replica of the requested resource with a high probability. Unfortunately, today’s CDNs
are not able to deliver CASs mainly due to two reasons: First, it is not solved how replicas of CASs
can access context information from within the CDN. Second, the distribution algorithms employed
in CDNs are not well suited for distributing CASs. In this work these two issues are addressed:

To grant the replicas of the CASs a homogeneous access to context information throughout the CDN,
I developed a concept for an integration layer. The integration layer was prototypically implemented
and comprises an infrastructure that resides on the servers and a context diffusion infrastructure that is
installed on the handhelds. It was evaluated by implementing a restaurant finder on top of it. Further-
more, I conceived a new heuristics that efficiently distributes CASs within CDNs based on a profit
maximization calculation. It takes a threshold based approach and uses techniques from statistical
process control to react only to persistent and significant changes of the request rate. The heuristics’
performance is currently evaluated by simulation.

146



3. Related Work

Many other researchers recognized the need to make context-aware systems scalable. Most of the
work focused on scalable context provision infrastructures like ConFab, Solar, GLOSS, SCI, IrisNet,
and iQueue (see [6] for an overview). However, to build scalable context-aware systems not only the
context provision process must be scalable, but also the CAS itself. Thus, large-scale context provision
infrastructures must be combined with large-scale service provision infrastructures. Candidates are
Peer-to-Peer Networks [13], Grids [3], and CDNs [15]. The only infrastructure that is globally in place
and can be reused are CDNs. CDNs have the additional advantage that a CAS provider can achieve
a global reach of his application by closing contracts with a single organization (the CDN provider).
Little research has been done in the area of scalable CASs so far. The only works I am aware of are
[2], [20], and [9]. [2] and [20] built a health-care application and exposed the sensors to the system
as grid services. A grid service is a Web Service that conforms to a set of conventions. By using grid
technology interoperability on the signature level is reached and the scalability properties of grids
can be reused. Regardless of which large-scale service provision infrastructure is used, an integration
layer is needed to couple it with the context provision infrastructures. Furthermore, algorithms need
to be developed that decide when and where to replicate a CAS.

4. Contribution

4.1. Integration Layer

Requirements: To support building large-scale CASs an infrastructure is needed that resides on
the servers of the CDN and provides context information (1.) for the replicas of the CASs. Since a
developer of a CAS cannot predict on which servers his CAS will be deployed the access to context
information must be homogeneous throughout the CDN. This means that the infrastructure must act
as an integration layer. It must bind to the heterogeneous regional context sources, map the retrieved
information to a standard information model, and provide it to the CASs in a unified way (2.). Ve-
ry often high level context information needs to be derived from many pieces of low level context
information. Thus, an infrastructure should also be able to execute workflows that generate higher-
level context information. This means that it must orchestrate the various context sources (3.). Since
the context sources will provide context information in various formats (e.g. WGS84 vs. UTM coor-
dinates) the infrastructure must transparently translate between those (4.). Some pieces of context
information will exist near the user. These are most efficiently gathered by the user’s handheld via
wireless technologies. However, there will also be many pieces of context information that are too far
away from the user to be captured wirelessly. For example, a restaurant finder might incorporate the
crowdedness of candidate restaurants into its recommendations or it might suggest only restaurants
that can be reached within 20 minutes with public transportation means taking into account the proxi-
mity of bus stops etc. and the delays of buses. These types of information are generated too far away
from the user to be retrieved wirelessly. Thus, an infrastructure must be able to combine wireless with
wired context retrieval (5.). How context information was obtained (wirelessly or wired) should be
transparent for the CASs (6.). Furthermore, an infrastructure should be fault-tolerant (7.), indepen-
dent from computing platforms and languages (8.), deployable in a web environment (9.), easy to use
(10.), and expandable (11.).

147



Realization: The CoCo infrastructure [5] presented in earlier work is an integration layer that resi-
des on the servers on which the CASs are replicated. It binds to the heterogeneous regional context
sources and provides context information to the CAS in a unified form. The CoCo infrastructure is
accessed by passing a document in the XML-based CoCo language that specifies which pieces of
context information are needed and how they must be combined to generate higher-level context in-
formation. The CoCo language is inspired by Web Service Orchestration Languages like the Business
Process Execution Language [1] and the Web Service Choreography Description Language [12]. The
CoCo language document is parsed and executed by the CoCo infrastructure that responds with the
required context information.

It is combined with a Context Diffusion Infrastructure [4] that resides on the handhelds of the users.
The main principle of Context Diffusion is that static server nodes announce information via local
wireless radio technologies like Bluetooth or IEEE 802.11. Mobile nodes listen to this information
and cooperate to disseminate the information by word of mouth. When a user subscribes to a CAS
he downloads a thin client that registers its context information requirements at the Context Diffusion
Infrastructure. This infrastructure searches in its immediate vicinity for context information via wire-
less technologies. When the user invokes the CAS, the thin client passes the locally gathered context
information to the server-based backend of the CAS. The backend hands the context information to
the CoCo infrastructure where it is cached and used when the CAS request context information by
passing a CoCo document. In this way it remains transparent for the CAS how context information
was retrieved.

To evaluate the integration layer and to show its appropriateness a restaurant finder was implemen-
ted based on J2EE technology. The application communicates with the integration layer via a Web
Services interface.

4.2. CAS Distribution

Granting a homogeneous access to context information throughout the CDN is one problem that needs
to be solved to reuse CDNs for CAS distribution. Another is that the replica placement algorithms
that are applied in today’s CDNs are suboptimal for the distribution of CASs. The market leader in
this industry, Akamai [8], employs a caching based replication strategy. With this approach a CAS
would be replicated on a server when the first request for it arrives to this server. Due to the size of a
typical CAS this would likely add an unacceptable delay for the user. Furthermore, such on-demand
application replication might result in transferring a large application and its data to fulfill a single user
request, increasing instead of decreasing the required bandwidth and wasting storage capacity [15].

Other placement strategies have been proposed (see [11] for an overview). Many algorithms are not
practically applicable because they assume that the global state of the system is known at a single point
within the system where the optimization takes place. This assumption is unrealistic because the in-
curred overhead to gather and distribute the required information would be too high. More applicable
approaches are presented in [17] and [16]. [17] shows that by choosing the best connected nodes
within the Internet to set replicas very good user-perceived latencies can be reached. [16] employs a
threshold based approach. If more than X requests per time period arrive from a region a replica is
set there. However, the threshold must be manually configured. How the threshold is calculated is not
addressed in [16].

In my work I take the approach to organize the data centers in a tree (similar to [10] and [18]). The

148



server that holds the original copy of the CAS becomes the root node. Well connected nodes are
more likely to receive a high position within the hierarchy. Thus, I build on [17], but also add some
randomness to achieve load balancing. Requests are routed to the nearest data center. If it does not
hold a replica, the data center propagates the request to its parent in the tree. Each data center logs how
many request per time period arrived. If this request rate λ exceeds a certain threshold, an additional
replica is set.

The threshold is determined based on an economical calculation. The latency improvement ∆L for
each user request that is reached by setting an additional replica is multiplied with the request rate λ
and the lifetime of the replica τ to derive the total latency improvements that a replica generates over
its lifetime. This total latency improvement is monetarily evaluated by multiplying it with a constant
ρ1 that has the unit [e/second]. The resulting value can be interpreted as the revenues a replica gene-
rates. Placing and storing a replica also incurs some costs. The storage costs are proportional to the
size R of the replica and the storage time which is again τ . Thus, the storage costs are calculated as
ρ2∗R∗τ , where ρ2 is a constant with the unit [e/(second*byte)]. The replica placement costs account
for the consumed bandwidth for setting a replica. It is proportional to the size R of the replica. It is
calculated as ρ3 ∗ R. ρ3 carries the unit [e/byte]. Using the revenues and the costs the profit that is
generated by an additional replica can be derived: profit = ρ1 ∗ ∆L ∗ λ ∗ τ − ρ2 ∗ R ∗ τ − ρ3 ∗ R.
The profit must be positive to justify the placement of a replica. Thus, a replica is set if the profit
persistently and significantly exceeds 0. This can be transformed to:

λ >
(ρ2 ∗ τ + ρ3) ∗ R

ρ1 ∗ ∆L ∗ τ

Since the heuristics should not react to short term fluctuations of the request rate, an exponentially
weighted moving average of λ is calculated. To test whether the moving average significantly exceeds
the threshold, approaches from statistical process control are adapted.

A simulation was set up based on the Scalable Simulation Framework [19] to evaluate the new dis-
tribution heuristics . It operates on a synthetic Internet topology generated by the Internet Topology
Generator [22]. CDN servers, context access points, and client nodes are placed within this topology.
Currently, I am in the process of executing simulation runs with varying parameters. The outcomes
are encouraging. The complete heuristics as well as the simulation results will be published soon.

5. Conclusion

In my work I show how scalable Context-Aware Services (CASs) can be built. The main idea is to
reuse Content Delivery Networks (CDNs). To allow for the distribution of CASs within CDNs an in-
tegration layer must be introduced that provides a uniform interface to context information throughout
the CDN. I developed a concept for such an integration layer. The integration layer was prototypically
implemented and comprises an infrastructure that resides on the servers and a context diffusion infra-
structure that is installed on the handhelds. Furthermore, I conceived a new heuristics that efficiently
distributes CASs within CDNs based on a profit maximization calculation. It takes a threshold based
approach and uses techniques from statistical process control to react only to persistent and significant
changes of the request rate. The heuristics’ performance is currently evaluated by simulation.

149



Literatur

[1] Andrews, T. et al. Business process execution language for web services, version 1.1, May 2003.
www-106.ibm.com/developerworks/library/ws-bpel/.

[2] Barratt, C. et al. Extending the Grid to Support Remote Medical Monitoring. In 2nd UK eScience
All hands meeting, Nottingham, U.K., September 2003.

[3] Fran Berman, Geoffrey Fox, and Anthony J.G. Hey, editors. Grid Computing: Making the Glo-
bal Infrastructure a Reality. Wiley, April 2003.

[4] T. Buchholz, I. Hochstatter, and G. Treu. Profile-based Data Diffusion in Mobile Environments.
In Proceedings of the 1st IEEE International Conference on Mobile Ad-hoc and Sensor Systems
(MASS 2004), Fort Lauderdale, USA, October 2004.

[5] T. Buchholz, M. Krause, C. Linnhoff-Popien, and M. Schiffers. CoCo: Dynamic Composition of
Context Information. In The First Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous 2004), Boston, Massachusetts, USA, August
2004.

[6] Thomas Buchholz and Claudia Linnhoff-Popien. Towards realizing global Scalability in
Context-Aware Systems. In International Workshop on Location- and Context-Awareness (Lo-
CA 2005) in cooperation with Pervasive 2005, Munich, Germany, May 2005.

[7] Guanling Chen and David Kotz. A survey of context-aware mobile computing research. Tech-
nical Report TR2000-381, Dept. of Computer Science, Dartmouth College, November 2000.

[8] Homepage of Akamai, Inc. www.akamai.com.

[9] Kerry Jean, Alex Galis, and Alvin Tan. Context-Aware GRID Services: Issues and Approaches.
In International Conference on Computational Science, pages 166–173, Krakow, Poland, June
2004.

[10] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin, and Rina Panigrahy.
Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on
the world wide web. In ACM Symposium on Theory of Computing, pages 654–663, May 1997.

[11] Magnus Karlsson, Christos Karamanolis, and Mallik Mahalingam. A Framework for Evaluating
Replica Placement Algorithms. Technical Report HPL-2002-219, HP Labs, Palo Alto, CA,
USA, 2002.

[12] Kavantzas, N. et al. Web service choreography description language version 1.0. W3C Working
Draft, December 2004.

[13] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim. A Survey and
Comparison of Peer-to-Peer Overlay Network Schemes. IEEE communications survey and tu-
torial, March 2004.

[14] B. Clifford Neuman. Scale in distributed systems. IEEE Computer Society, Los Alamitos, CA,
1994.

150



[15] Michael Rabinovich and Oliver Spatscheck. Web Caching and Replication. Addison Wesley,
2002.

[16] Michael Rabinovich, Zhen Xiao, and Amit Aggarwal. Computing on the Edge: A Platform
for Replicating Internet Applications. In The 8th Int. Workshop on Web Content Caching and
Distribution, September 2003.

[17] Pavlin Radoslavov, Ramesh Govindan, and Deborah Estrin. Topology-Informed Internet Replica
Placement. In Proceedings of WCW’01: Web Caching and Content Distribution Workshop,
Boston, MA, June 2001.

[18] Kavitha Ranganathan and Ian T. Foster. Identifying dynamic replication strategies for a high-
performance data grid. In Proceedings of the International Grid Computing Workshop, pages
75–86, Denver, Colorado, November 2001.

[19] Scalable Simulation Framework Homepage. http://www.ssfnet.org/homepage.html.

[20] Oliver Storz, Adrian Friday, and Nigel Davies. Towards ’Ubiquitous’ Ubiquitous Computing:
an alliance with the Grid. In System Support for Ubiquitous Computing Workshop at the Fifth
Annual Conference on Ubiquitous Computing (UbiComp 2003), Seattle, October 2003.

[21] Thomas Strang and Claudia Linnhoff-Popien. Service Interoperability on Context Level in Ubi-
quitous Computing Environments. In SSGRR2003w, L’Aquila/Italy, January 2003.

[22] Jared Winick and Jamin Sugih. Inet-3.0: Internet topology generator. Technical Report CSE-
TR-456-02, EECS Department, University of Michigan, 2002.

151




