
MoBe: Context-Aware Mobile Applications
on Mobile Devices for Mobile Users

Paolo Coppola1, Vincenzo Della Mea1, Luca Di Gaspero2, Stefano Mizzaro1,
Ivan Scagnetto1, Andrea Selva1, Luca Vassena1, Paolo Zandegiacomo Riziò1

1Department of Mathematics and Computer Science
2Department of Electrical, Management, and Mechanical Engineering

via delle Scienze 206 � University of Udine � I-33100 Udine, Italy
{coppola,dellamea,mizzaro,scagnetto,selva}@dimi.uniud.it, l.digaspero@uniud.it, {lucavax,zandepaolo}@inwind.it

http://www.mobe.it

ABSTRACT
Due to the appearance and widespread diffusion of new
mobile devices (PDAs, smartphones etc.), the traditional
notion of computing is quickly fading away, giving birth to
new paradigms, where concurrent entities, moving from
one location to another, exchange data and cooperate to-
wards a common goal. Hence, the scientific community is
searching for models, technologies, and architectures in
order to suitably describe and guide the implementation of
this new computing scenario. It is clear that the notion of
context plays a fundamental role, since it influences the
computational capabilities of the devices that are in it.
The present work directly addresses this problem proposing
MoBe, a novel architecture for sending, in push mode, mo-
bile applications (that we call MoBeLets) to the mobile
devices on the basis of the current context the user is in.
The latter is determined by both an ad-hoc MoBe infra-
structure and data from sensors on the mobile device (or in
its surroundings).
Keywords
Mobile devices, context-aware, software architecture.
INTRODUCTION
We envisage a world in which the mobile devices that eve-
rybody currently uses (cellular phones, smart phones,
PDAs, and so on) constantly and frequently change their
functioning mode, automatically adapting their features to
the surrounding environment and to the current context of
use. For instance, when the user enters a shopping mall, the
mobile phone can provide him/her with applications suit-
able for shopping, i.e., article locator, savings advertiser
etc; when entering in a train station, the same device be-
comes a train timetable able to give information on the
right train lane, delays, etc.
How to achieve this goal is not clear. It is well known that
current mobile devices can be used as computers, since

they have computational and communication capabilities
similar to computers of a decade ago. One approach might
be to have an operating system continuously monitoring
sensors on the mobile device, thus inferring situational in-
formation and triggering the right (preloaded) application
for the current context. Another approach is to have a Web
browser showing to the user context-aware data selected by
means of information filtering techniques.
In our opinion both these alternatives suffer from a lack of
flexibility and a waste of computational power. We propose
a different approach, where servers continuously push
software applications to mobile devices, depending on the
current context of use. Inspired by the well-known Nicho-
las Negroponte�s �Being Digital� expression, we name our
approach MoBe (Mobile Being), and the context-aware
applications pushed and executed on the mobile device
MoBeLets.
This is an interdisciplinary work: mobile agent community,
context aware computing, software engineering and mid-
dleware, interaction with mobile devices applications, in-
formation retrieval and filtering, and privacy and security
management are all disciplines that are deeply involved in
our project.
In this paper we describe our approach and some details of
its ongoing implementation, emphasizing how the MoBe
architecture efficiently supports a notion of context history.
The paper is structured as follows. In Section �Related
Work� we recall the state-of-the-art in the literature for the
research fields related to our work. In Section �The Overall
Architecture of MoBe� we describe the structure of our
model. In particular we give some details about the key
submodules dealing with the data sensing and context in-
ference activities, with the personalization issues, and with
the problem of filtering, downloading and executing the
MoBeLets. Section �Discussion and Open Problems� is
devoted to the analysis of several practical issues we found
during our first prototype of the MoBe architecture. More-
over, we also explain how the MoBe architecture naturally
supports context histories.

RELATED WORK
This is an interdisciplinary work and there are several re-
lated fields.
Context-aware computing is more than 10 years old, as it
was first discussed in [8]. However, the field seems still in
its infancy, as even the core definition of context is still
unsatisfying. Some definitions are, like dictionary defini-
tions, rather circular, since they simply define context in
term of concepts like �situation�, �environment�, etc. Some
researchers tried to define this concept by means of exam-
ples [2,9]; other researchers searched for a more formal
definition [2,3,10]; others identified context with location
[8] or with location, time, season, etc. [1,7].
An interesting framework for the development of location
aware applications is described in [11], where a symbolic
location model is used to represent the user�s situational
context and a map modeling tool links the symbolic infor-
mation to the corresponding geographical coordinates. The
resulting hierarchical structure is encoded in XML and can
be accessed through the WWW, without the need of an
explicit server infrastructure.
Another related research field concerns mobile agents [12].
Our approach tries to avoid all the resource load that these
architectures usually carry with, and to provide a simpler
implementation.
Information retrieval, context aware retrieval, just-in-time
information retrieval, and information filtering deal with
the information overload problem from different facets [6]
[5]. Google is starting to provide contextual (actual, local-
ized) services as well (http://www.google.com/lochp).
Peer-to-peer networks and wireless networks and technolo-
gies are of course involved as well.
THE OVERALL ARCHITECTURE OF MOBE
Figure 1 shows the overall MoBe architecture. The mobile
device runs a software module called MoBeSoul that is re-
sponsible of managing the whole lifecycle of a context-
aware application. Let�s follow the events that lead to push-
ing, downloading, and executing a MoBeLet on the mobile
device.
Context submodule
The process starts with context data received through:
•

•

•

•

•

Physical sensors. Almost all mobile devices are
equipped with some form of wireless network tech-
nologies (GSM, GPRS, UMTS, Bluetooth, Wi-Fi, Ra-
dio Frequency, IrDA, etc.), and can therefore sense if
there is a network connection around them (and the
strength of the corresponding electromagnetic field).
Moreover, the device might be equipped with sensors
capable of sensing data about the physical world sur-
rounding the mobile device (e.g., noise, light level,
temperature, etc.); also, the device might be able to re-

ceive data about its environment (e.g., temperature,
etc.) from some surrounding sensors.
“Virtual” sensors. MoBeSoul might receive data from
other processes running on user�s mobile device, like
an agenda, a timer, an alarm clock, and so on.
MoBeContext sensors. MoBeSoul is capable of receiv-
ing context information provided by an ad-hoc MoBe
Context Server (MCS). The MCS pushes information
about the current context to the users devices, with the
aim of providing a more precise and complete context
description. MCS might be implemented by a Wi-Fi
antenna, an RFID tag sensed by the mobile device, or
any other technology. The MCS also broadcasts a Con-
text ID (that, in the case of a Wi-Fi antenna might be
the network SSID and its MAC address).
Explicit user actions. The user can explicitly commu-
nicate, via the user interface, data about the current
context. For instance, he/she might choose a connec-
tion/network provider, set the alarm clock, select the
silent mode, and so on.
Context history representations. Sequences of contexts
traversed by the user in the past can be summarized in
some abstract form and used as context data as well,
together with the other kinds of context.

All these sensors data are processed by the MoBeSoul Con-
text submodule. It is responsible of producing, storing,
maintaining, and updating a description of the current con-
text the user is in. The Context submodule starts its inferen-
tial activity from concrete contexts (i.e., contexts directly
corresponding to sensors data). By some inferential mecha-
nism (we are currently devising a mechanism that employs
Bayesian Belief Networks) it derives abstract contexts (i.e.,
context which can be processed more conveniently; some
of the abstract contexts might be just concrete contexts).
The data and the inference are uncertain, and both the con-
crete contexts and the inferred abstract contexts have a
probability measure representing how likely it is that the
user is indeed in those contexts. The inferential engine ex-
ploits a database containing the history of past contexts and
it is tightly integrated with the Personalization submodule
(explained later), managing user�s preferences, user�s cur-
rent cognitive load, and degree of attention, etc. Concrete
and abstract contexts are represented by means of context
descriptors; the inferred abstract contexts descriptors are
stored in a Current Context Working Memory, and they
survive until the event of exit from that context is inferred.
Examples of current contexts are: the temperature is 20
degrees (with probability 0.9); the time is 12:30:00PM (p =
0.99); the MoBeContext ID is 1234; and so on.
Examples of abstract contexts are: the user is in a shopping
mall (p=0.75); the user is in the AirWood bookshop inside
the shopping mall in Udine West; the user is in his/her car
(p=0.56); the user is driving a car (p=0.8).

Figure 1. MoBe overall architecture.

Private context histories can be stored and processed only
Contexts are divided into a public and a private part: the
former can be distributed to servers and other entities and
contains, e.g., user�s approximate location, cognitive load,
and so on; the latter is kept private inside the MoBeSoul
and contains, e.g., user�s exact position, credit card infor-
mation or some other personal data, and so on.
Of course, personal user preferences can change the pub-
lic/privacy status of each item in a context descriptor. on
the user device; public context parts may be sent to external
entities able to collect individual context histories and ag-
gregate them for some purpose.
Context submodule does not send autonomously context
descriptors to other parts of the system; rather, it keeps a
registry of interested observers/listeners, which are notified
by the Notifier when the context entry/exit events happen.
After the notification, the observers can decide, using their
own criteria, to request the needed context descriptors to
the context module.
Personalization submodule
The Personalization submodule has two aims:

The Personal Data Gatherer collects data about user�s
preferences and habits, storing them into two internal
databases: the User Profile database contains several
different kinds of data, like user�s demographic infor-
mation (age, gender, etc.), preferences about real world
activities (e.g., restaurants, friends, etc.), habits (work-

ing hours, typical trips, etc.), and so on; the Usage &
Download Statistics database contains data about
which MoBeLets have been downloaded and executed
in the past, for how much time, which resources have
been used, and so on. User�s data are collected both
automatically (monitoring user�s behavior) and manu-
ally, by explicit user intervention.

• The Personalized Context Generator interacts with the
Context submodule, affecting the inference process
with the aim of making it more tailored to individual
needs. A useful metaphor to understand the interaction
between Context and Personalization submodules is to
see the Bayesian inferential network inside Context as
a graph painted on a sheet of paper, and to imagine the
Personalization activity as a transparent sheet of paper
on top of it: the Personalization layer is specific to the
single user, it has a higher priority and is capable to
change the underlying (and more general) context net-
work. The personalization layer can remove (hide)
nodes and arcs, change arcs weights (probabilities) ei-
ther in an absolute way (by specifying a new value) or
in a relative way (by increasing or decreasing the un-
derlying weight of a given amount). This also allows to
modify in a seamless way the Context network, in or-
der to include unforeseen contexts and inferences even
after the system is deployed.

•

Summarizing, contextual information is derived by the mo-
bile device from physical, virtual, ad-hoc sensors, and user
data; the Context and Personalization submodules infer an
abstract description of the current context taking into ac-
count, besides concrete context data, inference rules, user�s
preferences (history, user model, �), user�s current activi-
ties, cognitive load, degree of attention, other devices prox-
imity, etc. A clear separation between context and personal-
ization seems difficult to realize, but has important bene-
fits: independent modification of the Context network, in-
dependent usage of well established techniques from both
the personalization and context-awareness fields, develop-
ment of a non-personalized prototype of the MoBeSoul,
and so on. However, the relationship between context-
awareness and personalization should be carefully studied,
since, e.g., context histories might be viewed as a source of
personalization data.
Filter and Download submodule
The Filter and Download submodule is in charge of select-
ing which MoBeLets to download and to retrieve their
code. It is triggered by notifications of context entry and
exit events, received from the Context submodule. The
Scheduler receives these notifications and, on the basis of
its internal criteria, also depending on user�s preferences,
decides when to request the current public context descrip-
tors to the Context submodule and to forward them to a
MoBe Descriptors Server (MDS). The MDS is in charge of
selecting, on the basis of the received context descriptors,
those MoBeLets that are more relevant to user's current
context.
Since not all the MoBeLets selected on the basis of the
public context descriptors will be downloaded (nor exe-
cuted), the MDS does not handle MoBeLet code, but just
MoBeLets descriptors. Each descriptor is a simple XML
file containing several data about the corresponding Mo-
BeLet: an unique identifier, a textual description, a mani-
fest declaring which resources the MoBeLet will need and
use while executing, a download server from which the
actual MoBeLet can be downloaded, and so on.
The received MoBeLet descriptors are filtered once again
by the Filter Engine, using the private context descriptors.
As a result of this step, the probability that the user will
desire to run each MoBeLet is determined. Then the
Downloader downloads, on the basis of its own internal
criteria, the MoBeLets code, from the MoBe MoBeLet
Server (MMS) specified in the corresponding descriptors.
The stream of MoBeLets is then passed to the Executor.
This design allows:
•

•

•

•

To encapsulate inside the Scheduler adequate strate-
gies to send to the MDS the public context descriptors,
for a more efficient resource usage: the Scheduler
might send the context descriptors at each context
change, it might collect a certain number of context
descriptors (perhaps removing those corresponding to
context exit events received meanwhile), it might send
context descriptors at fixed time points, and so on.

To separate public and private context data: only the
public data are sent to MDS, but both public and pri-
vate are used to filter the MoBeLet descriptors re-
ceived.
To easily cache both MoBeLet descriptors and code, in
order to minimize bandwidth usage.
To have the user controlling the whole process and to
participate in MoBeLets filtering and selection: the
user might proactively stop an undesired MoBeLet, or
be requested a preference to a resource demanding
MoBeLet, and so on. On the other side, the two stage
filtering allows a lower cognitive load to the user.

Executor submodule
The last submodule of the pipeline is the Executor. Its aim
is to run each downloaded MoBeLet inside a sandbox, in
order to avoid malicious MoBeLets to use resources against
user�s will. Each MoBeLet is managed by the Scheduler,
which is capable of starting, pausing, stopping, and
destroying the MoBeLets. The Scheduler is notified of con-
text exit (and entry) events, to stop those MoBeLets that go
out of context. Each MoBeLet can register itself with the
Registry inside the Context submodule, in order to be di-
rectly notified of relevant context change events.
Each MoBeLet that has to use resources outside its sandbox
is allowed to do so only through the Security Manager,
which will deny requests that are incompatible with Mo-
BeLet manifest, prompting the user to confirm more heavy
resource usages.
DISCUSSION AND OPEN PROBLEMS
We described an architecture that is still under develop-
ment; in this section we focus on some open issues.
Scalability issues
MoBe architecture is scalable for what concerns MCS and
MS: more servers can be added at will, since each of them
does not provide a centralized service. The bottleneck of
this architecture is the MDS: in some cases, the MoBeLet
descriptors request will be sent to some local server (when
the MCS provides a context ID); but in some other cases
the MoBeLet descriptors request will be sent to the main
MDS server (when the ID can�t be provided). In the last
case, there is the risk of overloading the main MDS server.
To understand if this is a serious problem, let us try to
compare it to nowadays Google statistics. Google receives,
and processes almost immediately, about 1000 queries per
second. If MoBe will be adopted, we can estimate about 1
billion of MoBe enabled mobile devices, each of which will
probably perform, on average, about 1000 context change
per day (in daytime, about 50-100 context change per hour;
no context change during the night). This would mean a
total of 1012 context change per day, i.e., (1012) / (24 × 60 ×
60) ≈ 107 ca. context change per second. Not all of them
will be sent from MoBeSoul, since the Schedule submodule
Filter & Download selects and queues some public context
descriptors, but let us be pessimistic and assume that this
does not decreases significantly the number of requests to
the public server. Let us assume instead that the local

server allow to decrease of another factor of 10, leading to
106. This is 1000 higher than today�s Google, but it is not
so frightening; at worst, we might deploy 1000 MDS
around the world, and configure the MoBeSouls so that
each of them talks to one of these (e.g., randomly, or stati-
cally), thus distributing the load. As a last note on this is-
sue, let us remark that in principle MCS, MDS and MMS
can be the same server.
Structured vs. unstructured approach
Turning to more general issues, we see two major trends in
current computer science and web technologies. The first
one is to provide structure in the produced data: in data-
bases, data are stored and retrieved accordingly to well de-
fined schema; XML, HTML, XHTML can instill semantic
information in otherwise almost unstructured natural lan-
guage text; Web services are described on the basis of spe-
cific XML formats; Semantic Web is a hot word in the
community; and one might go on. Research within the sec-
ond trend is devoted to empower current algorithms, tech-
niques, and software applications in order to deal with un-
structured data: search engines are the second activity of
web users (after email); Google GMail fosters an unstruc-
tured view of one�s own mailboxes; images, sounds, and
videos are often searched on the basis of their semantic
content, which is hard to encapsulate in a-priori textual
descriptions; and so on.
MoBe tries to combine both approaches: a context descrip-
tor is are made of structured data; a MoBeLet descriptors
can be mainly made of structured data, provided by the
MoBeLet creator, but in principle it is possible to have also
unstructured data like, e.g., the comments inserted in the
code by the programmer and to exploit state-of-the-art
software retrieval and filtering techniques [4].
Application vs. data
Within MoBe, applications are sent around, not just data.
Of course, this is a subtle distinction: as every student
knows, for a compiler an application is simply data; more-
over, looking inside the memory of a computer, one cannot
distinguish between bytes representing programs and bytes
representing data on which programs run. However, from
an abstract/semantic viewpoint, it is perfectly reasonable to
distinguish between the two.
Therefore, MoBe approach is different from current main-
stream that relies on Web browsers based on HTTP-like
protocols (HTTP, WAP, etc.). We believe that this is a
shortsighted view: using a well-known metaphor, we might
be experiencing the QWERTY of mobile/contextual appli-
cations/devices. MoBe is a much more flexible and power-
ful architecture. Of course, we are aware that it has its own
weaknesses: writing software instead of data is more diffi-
cult; sending applications might lead to spread malicious
MoBeLets (i.e., viruses); privacy issues, handled by distin-
guishing between public and private context parts, are
much more complex, and so on.

Context histories, context, and personalization
MoBe architecture is somehow neutral with respect to con-
text histories, but it takes them into account in a rather
natural way. First, the Inferential Mechanism inside the
Context submodule infers the abstract context not only on
the basis of the current data from the sensors, but also ex-
ploiting the context history database. Second, downloaded
and executed MoBeLets can be selected not only on the
basis of the current context, which in turns depends on the
context history, but also exploiting the Statistics & Log
databases inside the Filter & Download and Executor sub-
modules.
This is another point in which the aforementioned separa-
tion between context and personalization is, although
tricky, advantageous, since it can simplify and empower
context histories management. Indeed, statistics and logs of
MoBeLet usage by a user are rather sensible data; hence,
they can be exploited at Personalization (rather than Con-
text) level. On the other side, average statistics on Mo-
BeLets download and usage could be kept on the MoBe
Descriptor Server, to provide a more effective filtering by
the public context descriptors. Finally, the distinction be-
tween context-aware and personalization (and public and
private context) is a complex issue deserving further work.
REFERENCES
[1] P.J. Brown, J.D. Bovey and X. Chen. Context-aware applica-

tions: From the laboratory to the marketplace. IEEE Personal
Communications 4(5): 58�64. 1997.

[2] G. Chen and D. Kotz. A Survey of Context-Aware Mobile
Computing Research, 2000

[3] A.K. Dey and G.D. Abowd. Towards a Better Understanding
of context and context-awareness. TR GIT-GVU-99-22,
Georgia Inst. of Tech., College of Computing, 1999.
ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-22.pdf

[4] R. Gonzales, K. van der Meer. Standard metadata applied to
software retrieval. J. of Inf. Science, 30(4): 300�309, 2004.

[5] G.J.F. Jones, P.J. Brown. Context-aware retrieval for ubiqui-
tous computing environments, In F. Crestani, M. Dunlop, S.
Mizzaro (eds.) Mobile and ubiquitous information access,
vol. 2954 of LNCS: 227�243, Springer-Verlag, 2004.

[6] B.J. Rhodes, P. Maes. Just-in-time information retrieval
agents, IBM Systems J., 39(3�4): 685 � 704, 2000.

[7] N. Ryan, J. Pascoe and D. Morse. Enhanced reality fieldwork:
the context-aware archaeological assistant. Computer Appli-
cations and Quantitative Methods in Archaeology. V. Gaff-
ney, M. van Leusen and S. Exxon (eds.). Oxford (UK), 1998.

[8] B. N. Schilit and M. M. Theimer. Disseminating active map
information to mobile hosts. IEEE Networks 8: 22�32, 1994.

[9] B. Schilit, N. Adams, and R. Want. Context-aware computing
applications. In Proc. of IEEE Workshop on Mobile Comput-
ing Systems and Applications, 85�90, Santa Cruz, CA, 1994.

[10] A. Schmidt, K. Asante Aidoo, A. Takaluoma, U. Tuomela,
K. van Laerhoven, and W. van de Velde. Advanced interac-
tion in context. In Proc. of 1st Int’l Symp. on Handheld and
Ubiquitous Computing, 89�101, Karlsruhe (Germany), 1999.

[11] C. Stahl, D. Heckmann. Using Semantic Web Technology for
Ubiquitous Hybrid Location Modeling. In Workshop notes
on Ubiquitous GIS, in conj. with Geo-Informatics 2004.

[12] M. Wooldridge. An Introduction to Multiagent Systems. John
Wiley & Sons, 2002.

Author Biographies
Paolo Coppola, PhD, is an assistant professor of computer
science at the University of Udine, Italy. His main research
interests include the implementation of functional lan-
guages, type systems, linear logic, optimal reduction,
lambda calculus and computational complexity. He is cur-
rently investigating aspects of mobile systems and context-
aware computing.
Vincenzo Della Mea, PhD, is an assistant professor of
computer engineering at the University of Udine. His re-
search focuses on medical informatics and telemedicine,
evaluation of medical systems, hypermedia, eLearning
technologies, and mobile devices.
Luca Di Gaspero, PhD, is an assistant professor of com-
puter engineering at the University of Udine. His main re-
search interest concern the investigation of search tech-
niques for scheduling problems. Recently he became inter-
ested also in information retrieval and in mobile systems
and context-aware computing.
Stefano Mizzaro, PhD, is an assistant professor of com-
puter engineering at the University of Udine. His research
activities are mainly in the fields of Web information re-

trieval, artificial intelligence, scholarly publishing, and mo-
bile devices.
Ivan Scagnetto, PhD, is an assistant professor of computer
science at the University of Udine. His research interests
are formal methods, computer aided formal reasoning,
process algebras and Logical Frameworks. He is currently
investigating aspects of mobile systems and context-aware
computing.
Andrea Selva holds a M.Sc. in Computer Science from the
University of Udine. He is currently a research associate at
the same university, working on the implementation of mo-
bile systems.
Luca Vassena is a M.Sc. student in Computer Science at
the University of Udine. His master thesis concerns the
investigation of context representation techniques for mo-
bile systems.
Paolo Zandegiacomo Riziò holds a M.Sc. in Computer
Science from the University of Udine. He is currently a
research associate at the same university, working on the
implementation of mobile systems.

