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ABSTRACT
Practical in-home health monitoring technology depends
upon accurate activity inference algorithms, which in turn
often rely upon labeled examples of activity for training.
In this position paper, we describe a technique called the
context-aware recognition survey (CARS) – a game-like
computer program in which users attempt to correctly guess
which activity is happening after seeing a series of symbo-
lic images that represent sensor values generated during the
activity. We describe our own implementation of the CARS,
introduce preliminary results, and discuss the first steps to-
ward a completely unsupervised system.

INTRODUCTION
Pervasive computing applications implicitly gathercontext
history as they collect and store sensor data over time. In
this position paper, we describe the context-aware recogni-
tion survey (CARS), which employs context history to help
users label anonymous activity episodes. User-labeled ex-
amples of activity are valuable because they can 1) improve
pervasive computing design decisions and 2) be used to train
machine learning algorithms that recognize activities.

Drawing on recent research in practical home monitoring sy-
stems, game-based image-labeling techniques, and data vi-
sualization techniques [2,6,7], we designed a game-like mul-
tiple choice test that displays low-level sensor readings as
colorful symbols and descriptive text. Users answer the que-
stions with the goal of correctly labeling the activity being
depicted. We report a study in which users (N=10) perfor-
med a subset of tasks in an instrumented environment and
completed a context-aware recognition survey approximate-
ly one week later.

RELATED WORK
Several standard classes of methods exist for collecting da-
ta about daily activities, including one-on-one or group in-
terviews, direct observation, self report recall surveys, time
diaries, and the experience sampling method (ESM) [1, 4].
While direct observation is often reliable, it is prohibitive-
ly time-consuming. In interviews and recall surveys, users
often have trouble remembering activities and may censor
what they do report. Cognitively enhanced recall surveys
mitigate forgetfulness by using cues such as photo snaps-

hots. Time diaries also reduce recall and selective reporting
bias, but require a commitment from the user to carry around
(and use) the diary. Experience sampling uses a prompting
mechanism (e.g., a beep) to periodically ask the user for a
self-report. These prompts may interrupt activities and must
be carefully delivered in order to avoid annoying the user [4].
All of these methods require the participation of the person
who performed the activity and others may require outside
help as well (e.g., interviewers).

CONTEXT AWARE RECOGNITION SURVEY
The key idea of the context-aware recognition survey is to
use contextual information collected by ubiquitous sensors
to provide an augmented recall survey that can be perfor-
med by anyone at any time, regardless of who performed the
activity or how the sensors were configured. The technique
consists of the following steps: 1) sensor readings are col-
lected over time and stored, 2) sensor readings are automa-
tically segmented by activity into episodes (calledepisode
recovery), 3) episodes are converted into a series of gene-
ric, highly descriptive images, and 4) episodes are labeled
by users in a game-like computer-based recognition survey.
Afterwards, the labeled episodes may be used to train ma-
chine learning algorithms or to improve design decisions for
pervasive computing applications.

Initial Study
We performed an experiment in which we designed, imple-
mented, and tested a context-aware recognition survey. We
now briefly describe the study.

Subjects.We recruited 10 adult volunteers from the univer-
sity and from the community. Subjects ranged in age from
25 to 32 years, and the sample was 50% female and 50%
male. Subject background varied, ranging from librarians to
engineers.

Instrumented environment.This study occurred in the aut-
hor’s home. A kitchen and bathroom were instrumented with
two types of anonymous, binary sensors: magnetic contact
switches and pressure mats. Contact switches were placed
on doors and drawers (e.g., refrigerator door, cabinet door,
kitchen drawers). Pressure mats were placed in front of im-
portant areas (e.g., in front of the sink). Sensors were polled
every second and values were stored in a mySQL database.



Figure 1. Screenshot of program.

Figure 2. From left to right, top to bottom: (a) Refrigera-
tor open, (b) refrigerator close, (c) cold water on, (d) cold
water off, (e) cabinet open, (f) cabinet closed, (g) stand
near sink, (h) leave sink.

Activity recording.Subjects were instructed to choose and
perform a subset of several kitchen tasks. The kitchen tasks
were: prepare a cold drink, prepare either a sandwich, a fried
egg, or a microwave pizza, eat the meal, wash dishes and put
them away, and throw away any trash. During the bathroom
portion, subjects were given a toothbrush and were instruc-
ted to brush their teeth and then perform two of three tasks:
washing their face, washing their hands, and combing their
hair. An observer time-stamped the start and end points of
each activity using a laptop computer. Subjects participated
one at a time.

Context-Aware Recognition Survey.We presented our computer-
based recognition survey as a “game” in which the goal was
to correctly guess which activities were happening given on-
ly the sensor readings collected from the kitchen and ba-
throom environments. The contextual information gathered
by the sensors was hand-segmented into episodes and con-
verted into a series of images via the Narrator program [7].

See Figure 1 for a screenshot of the computer program. Each
episode consisted of a series of scrolling images that had red
or green backgrounds, depending on whether that object was
turned on or off (see Figure 2). The word “kitchen” or “ba-
throom” was presented with each episode to indicate the lo-
cation of the episode. The only timing information included
was the total duration of the episode. Subjects were able to

pause the scrolling pictures, but were not able to replay an
episode. After viewing an episode, subjects were asked to
select from a multiple choice list of every possible kitchen
or bathroom activity (depending on which room the activity
occurred in) plus a “None of the Above” answer. Subjects
were also asked to rate how confident they were about their
choice on a scale of one to five.

Subjects were administered the CARS on a laptop compu-
ter a mean of 5 days following the activity recording. Each
subject was presented with two sets of 12 activity episodes,
which we call the self set and the other set. The self set
contained 8 episodes from the subjects own activities and
4 counterfeit episodes which did not correspond to any ac-
tivity. The other set contained 8 episodes of someone else‘s
activities and 4 counterfeit episodes. Subjects were informed
of which sets were self or other. The survey administration
was counterbalanced, with half of the subjects presented the
self set first, and the other half with the other set first.

Results
Here, we discuss selected results of our study. See [9] for a
more detailed discussion of results.

• Subjects successfully identified 82% of the 24 total episo-
des (M = 19.60,SD = 3.47). This indicates thatcontext
history is useful for data collection in the home.Inde-
ed, subjects were able to successfully label most activities
with confidence: on the Likert scale of 1-5 (1=Not Sure
and 5=Very Sure), subjects reported being Mostly Sure
(M = 3.96,SD= 1.03) across all of the episodes. Futher-
more, user confidence ratings were significantly related to
whether the episode was actually rated correctly, with a
significant difference between mean confidence level on
correct (M = 3.03,SD= 1.03) vs. incorrect (M = 2.61,SD
= 1.06) selections,t(238) = 2.39, p < .01.

• Overall, subjects were equally good at labeling their
own or other people’s activities. Ignoring counterfeit
episodes, performance on the self section (M = 7.10,SD
= 1.29) and the other section (M = 7.10,SD = .99) was
identical, with subjects correctly identifying 89% of the 8
possible episodes.



Figure 3. The iBracelet, a wearable RFID reader.

• The number of days between activity performance and ac-
tivity recall ranged from 2 to 7 (M = 5.00, SD = 1.63)
and was not significantly correlated with total performan-
ce scores,r(8) = .27, p = .44. This indicates thatcontext
history may help mitigate recall bias.

• We found that the order of test administration (self then
other, or vice versa) impacted performance on the identi-
fication of counterfeit episodes. Subjects who completed
the self section first were significantly better at detecting
fake episodes in the other section (t(8) = 2.36, p < .05),
indicating thatas subjects gained more practice their
performance improved.

• Subjects reported that they enjoyed using the program,
calling the symbols “cute,” and “easy to understand.” Sub-
jects reported that the symbolic images were “pretty easy”
to “very easy” to understand on a Likert scale of 1-5 (M =
4.70,SD= .48). Thus, we found that usinga scrolling set
of symbolic images was a useful approach for display-
ing context history.

CURRENT WORK
We identified two main weaknesses in our CARS implemen-
tation: 1) we used low-granularity sensors (e.g., contact swit-
ches), and 2) we depended on a human to hand-segment the
data into episodes. In this section we describe our current
solutions in these areas.

Higher Granularity Sensors
In our study, we found that our choice of simple sensors did
not provide sufficient granularity for users to confidently la-
bel certain activities. For example, it was particularly diffi-
cult to tell the difference between washing hands and face.
To remedy this situation, we have begun to integrate higher
granularity RFID sensors, specifically the iBracelet [5].

Figure 3 illustrates the RFID infrastructure that we assu-
me. On the left is a bracelet which has incorporated into
it an antenna, battery, RFID reader and radio. On the right
are day-to-day objects with RFID tags (battery-free stickers
that currently cost 20-40 cents apiece) attached to them.
The reader constantly scans for tags within a few inches.
When the wearer of the bracelet handles a tagged object,
the tag on the object modulates the signal from the reader
to send back a unique 96-bit identifier (ID). The reader can
then ship the tag ID wirelessly to a base computer which
can map the IDs to object names. We currently assume that
subjects or their caregivers will tag objects; we have tag-
ged over a hundred objects in a real home in a few hours.

Figure 4. From left to right: (a) Cups, (b) plate, (c) tooth-
brush & toothpaste.

The corresponding CARS symbols are images of the objects
being manipulated. We assembled several dozen prototypi-
cal object-symbols using the image search function of the
Google search engine. See Figure 4 for example symbols.

Automatic Episode Recovery
An attractive aspect of the context-aware recognition survey
is the fact that it is completely unsupervised (aside from the
user labeling step). In our previous study, however, we hand-
segmented the stream of sensor readings generated by the
user. In a first step towards automating this step, we con-
ducted a small study that used HMMs bootstrapped with
common sense information mined from the Internet. The key
idea is to train rough HMM models with information “scra-
ped” from instructional web pages, and then to use these mo-
dels to identify the segments between activity episodes.

We conducted an experiment to test the usefulness of boot-
strapped HMMs for automatic episode recovery. We used
data from a previous study in which over 100 RFID tags we-
re deployed in a real home. Objects as diverse as faucets and
remote controls were tagged. We had 9 non-researcher sub-
jects with a wearable RFID reader perform, in any order of
their choice, 14 ADLs each from a possible set of 65; in prac-
tice they restricted themselves to 26 activities over a single
20 to 40 minute session. There were no interleaved activities
and a written log was used to establish ground truth.

An HMM was trained on information gathered from the In-
ternet. The datamining process used word appearances on
“how to” websites to compute the probability that an object
was used during each activity. From this mined informati-
on we assembled an HMM with one state for each activity,
and a set of observations composed of the set of mined ob-
jects, pruned to include only those which we know are in our
set of deployed tags. The observation probabilities were set
to normalized values of the mined probabilities. We set the
HMM’s transition probabilities to reflect an expected num-
ber of observations (5) for each activity, as well as a uniform
probability of switching to any other activity. See [5] for a
thorough description of the datamining process.

Next, for each of the 9 sensor traces (one for each subject)
we used the Viterbi algorithm to compute the most likely se-
quence of labels for each object (i.e., sensor reading). We
then simply segmented the labeled trace into contiguous se-
quences of the same label. To measure accuracy of the seg-
mentation we used thePk metric [3]. ThePk metric is the
probability that two observations at a distance ofk from one



another are incorrectly segmented. As such, it can be thought
of as the error rate for the segmentation and 1 -Pk can be
thought of as the segmentation’s accuracy.k is set to one half
of the average segment length (3 in our case). ThePk sco-
re for our segmentation using only the mined parameters is
29.7, indicating that we should expect to be able to segment
sensor traces in a completely unsupervised manner with hig-
her than 70% accuracy. This indicates thatbootstrapped
HMM models can potentially perform unsupervised epi-
sode recovery.

EXPECTATIONS FOR THE WORKSHOP
Context history is a powerful source of information with ma-
ny exciting applications. The ECHISE workshop provides
the first author an opportunity to meet other researchers who
are using similar technologies and approaching similar is-
sues. Moreover, it offers a valuable opportunity to achieve
consensus among other researchers as to problem areas and
promising avenues of future research.

We are interested in determining how other researchers are
using context history in terms of pervasive computing. Spe-
cifically, we are interested in sharing tips and techniques for
using context history in the domain of automatic health mo-
nitoring – an increasingly important application of pervasive
technology. How other researchers collect context history,
what they choose to collect, and how they present it is of in-
terest. Finally, we are particularly interested in learning how
other researchers are dealing with privacy constraints.

CONCLUSION
In this position paper, we described current work with the
context-aware recognition survey, an approach for labeling
activities that uses contextual information collected by sen-
sors. We presented results from a recent user study, indica-
ting that such an approach can be effective. We discussed
improvements being incorporated into the next generation
our own CARS. Finally, we described what we hope to get
out of the workshop.
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