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ABSTRACT 

In this paper, we present a context-aware service platform 

called Synapse and its simple smart home test bed. By 

exploiting the recorded histories of contexts and services, 

Synapse can learn different users’ habits. Then Synapse can 

predict the most relevant services that users will use in the 

current situation based on their habits, and provide services 

in Active Mode and Passive Mode. Considering the 

challenges faced, we apply a stochastic approach – 

Bayesian Networks [17] to build the model of Synapse, and 

implement a flexible, end-user manageable system, which 

can absorb various uncertainties from multi-dimensional 

sensor data and provide personalized services. 
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INTRODUCTION 

Context-awareness is now regarded as a key ingredient for 

pervasive computing, and several toolkits such as Context 

Toolkit [21] and Location Stack [4] have been proposed to 

incorporate users’ contexts into network applications. An 

attractive category of context-aware applications is the 

service automation in the indoor environment such as home 

and office [15], which aims at providing users with dynamic 

services that adapt to changing environment on the basis of 

users’ habits. Obviously, the best ground for learning users’ 

habits exists in the recorded histories of the users’ 

interactions in context (context histories for short). The 

usefulness of location history has been explored to report 

users’ mobility patterns in an office [13]. However, in the 

real world applications, users’ contexts contain diversity, 

from users’ activities to environmental status; and users’ 

habits vary widely, from the usage of services to the 

mobility patterns. Therefore, a dynamic mechanism is 

necessary, which can provide various services by taking the 

users’ contexts into account. We are developing a context-

aware service platform – Synapse, which can learn different 

users’ habits by exploiting the recorded histories of contexts 

and services, then predict and provide the most relevant 

services that users will use in the current situation based on 

their habits. We are implementing a smart home test bed of 

Synapse, and three simple scenarios are used to examine the 

practicability of our methods. 

The following “daily scenarios” are assumed to be learned 

from users’ context histories, and are used for evaluation: 

• The “Light” Scenario: if it is too dark in the room, 

Synapse will automatically turn on the light. 

• The “TV” Scenario: Synapse will recommend TV 

programs appropriate for people in the living room. (If 

only kids are watching TV, cartoon videos will be 

recommended. When parents and kids are watching TV 

together, Discovery or some other channels will be 

recommended.) 

• The “Music” Scenario: Synapse will automatically 

turn down the volume of the music player when someone 

is using the phone, and turn up the volume after using it. 

We faced several challenges when we designed our system. 

First, considering the flexibility of system and the ease of 

management for end-users, we should apply a dynamic 

mechanism rather than binding the contexts and services in 

a specification language such as ECA [12]. Second, since 

users’ habits may slowly change as time advances, our 

algorithms should have the ability of updating to reflect it. 

Third, corresponding to the diverse contexts (such as “the 

user is sitting”, “the brightness in a room”) and various 

services (such as “turn on light”, “select TV channel 3”), 

our model should have the capability to deal with multi-

dimensional inputs and outputs. Fourth, personalized 

services are desired by different users. Finally, the system 

should work with imperfect and noisy sensor data. 

With these challenges in mind, we apply a stochastic 

approach for Synapse, which is based on one of Bayesian 

Networks [17] – HMM (Hidden Markov Model) [18]. The 

model of Synapse consists of continuous cycles. Each cycle 

is composed of two phases: Learning Phase and Executing 

Phase. In the Learning Phase, Synapse learns the 

relationship between contexts (we call them “sensor events” 

in Synapse) and services by exploiting the recorded 

histories of them. Then in the Executing Phase, based on 

the learned relationship and the current sensor events, 



Synapse predicts the most possible services to be used and 

provides them to users. Since users would like to enjoy 

autonomous services in a moderate degree without losing 

control of them [2], Synapse provides services in two 

modes: Active Mode will start a service automatically 

based on sensor events, while Passive Mode recommends 

the top 5 relevant services in a list and let users select. The 

results of the Learning Phase are used as prior knowledge 

for the next cycle. To easily achieve personalization, user 

ID is treated as a sensor event. 

The related works of time-series prediction and smart home 

projects will be introduced in section 2. The architecture of 

Synapse will be explained in section 3. The preliminary 

evaluation of Synapse will be discussed in section 4. The 

conclusion and future work will be given in section 5.  

RELATED WORKS 

For time-series prediction of continuous data, linear models 

(such as ARIMA, ARMAX [5]) or non-linear models (such 

as neural networks or decision trees [14]) are usually used. 

For discrete data, n-gram models [8] or variable-length 

Markov models [20] are common choices. Compared to 

these methods, Dynamic Bayesian Networks (DBN) [17] 

have some advantages appropriate for the challenges we 

face: First, it is easier for DBN to deal with multi-

dimensional inputs and outputs. Second, prior knowledge is 

easy to be incorporated, so the prediction of the future is 

based on all the past history. Third, DBN is more flexible 

than simple supervised classifiers. Finally, DBN has been 

successfully used in many areas [6, 11, 19] for time-series 

prediction. 

Therefore, we choose HMM [18], one of Bayesian 

Networks, to build the core model of Synapse. This core 

model is a general context-aware platform, which can be 

used not only in smart home environment, but also in a 

broad range of context-aware applications that need to 

correlate the contexts and services, since it provides 

standard interfaces for contexts and services. 

Several smart home projects are in progress. The Georgia 

Tech Aware Home [1] and MIT House_n [7] use an array 

of sensors to determine users’ locations and activities 

within an actual house.  The Neural Network House [16] 

balances the goals of anticipating user needs and energy 

conservation through a neural network. The MavHome [3] 

uses an intelligent and versatile home agent to perceive the 

state of the home through sensors and act on the 

environment through effectors. The industrial examples are 

also available, such as the Microsoft Easy Living project, 

the Cisco Internet Home, and the Verizon Connected 

Family project. Although, similar with these projects, our 

smart home test bed of Synapse extracts contexts from raw 

sensor data and adopts services from smart devices, our 

original core model guarantees the uniqueness of Synapse. 

ARCHITECTURE OF SYNAPSE  

The smart home test bed of Synapse consists of four parts: 

1) the sensor event collection part that captures real world 

information, 2) the service control part that provides 

services, 3) the Synapse Core, and 4) the user interface. 

Architecture of Synapse is shown in Figure 1. 
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Fig. 1: Architecture of Synapse.  

Sensor Event Collection Part 

The sensor event collection part captures real world 

information from various sensors, converts raw data into 

useful contexts (we call them “sensor events” in Synapse), 

and records these sensor events in database. Sensor 

Aggregator fuses the raw sensor data and reduces the noise. 

For instance, the average temperature in a room is fused 

from different temperature sensors. Context Inference 

extracts complex events such as “the user is sleeping” from 

simple events. On this test bed, 4 kinds of sensors are used 

to produce 11 events: RFID is used to identify users, U
3
 

wireless sensor nodes [9] are used to capture the 

temperature, brightness and human motion, a contact 

detector detects whether the phone is in use, and an e-

calendar detects a day of the week. 

All the sensor events are recorded as a time series {E1, E2 

…} in database. Each sensor event is recorded as E (EN, 

EV, ET), which respectively represents the event ID, the 

event value and the time at which this event is recorded. We 

predefine a set of events {e1, e2… eN} (such as e1 means 

“temperature”, e2 means “brightness”), and EN ∈ {e1, e2… 

eN}. Many context inference schemes can be used to 

recognize events and their values from raw sensor data [10]. 

However, since event values are generated from different 

types of sensors (e.g. the temperature is 25
o
C, and the 

humidity is 60%), and it is difficult for a general core to 

process all types of values, we use fuzzy sets [22] 

approaches to unify all the event values between 0 and 1 as 

in [10], which means EV ∈ [0, 1]. Basically, an event will 

be recorded when the value changes. However, in many 

scenarios, it is not necessary to record events as frequently 

as they change, so we can add some requirements to event 

recording. Events will not be recorded, until they satisfy 

these requirements. (e.g. one requirement is “e1 is over 0.7”, 

so e1 will not be recorded until it is over 0.7.) 



Service Control Part  

The service control part controls various devices to supply 

services. Service Launcher operates as a proxy between 

Synapse Core and the devices. It can receive a service ID 

from Synapse Core through UDP/IP networks, and controls 

the device corresponding to this service ID. It can also send 

the ID of a selected service to Synapse Core for service 

recording. As a result, it is easy for Synapse to add new 

services, since Synapse Core can manage them with only 

IDs, and ignore the various operations of different devices. 

On this test bed, 4 devices are used to provide 23 services: 

a light and a fan provide on/off services, a TV provides 

on/off, 12 channels and 2 videos, and a music player 

provides on/off and music mute/loud services. 

All the services are recorded as a time series {S1, S2 …} in 

database. Each service is recorded as S (SN, ST), which 

respectively means the service ID, and the time at which 

this service is recorded. We predefine a set of services {s1, 

s2… sM} (such as s1 means “turn on light”, s2 means “mute 

music”), and SN ∈ {s1, s2… sM}.  

Synapse Core 

We apply HMM to model the relationship between the 

sensor events and the services. Figure 2 shows one cycle of 

Synapse model. There are two basic components in HMM: 

the hidden state Xt and the observation of state Yt. In 

Synapse, each hidden state Xt corresponds to a service St 

(not lowercase s), to indicate the situation in which this 

service is used, and the observation Yt is a vector of event 

values (y1, y2… yN), which are the current values of {e1, 

e2… eN}. There are three parameters in HMM: the prior 

probabilityπ(i)=P(X1=i) which represents the initial state, 

the transition matrix A(i,j)=P(Xt=j|Xt-1=i) which represents 

the probability of transfer from Xt-1=i to Xt=j, and the 

observation model P(Yt|Xt) which represents the relation of 

Xt and Yt [16]. The learned results in one cycle are used as 

the initial estimations of the next cycle. 

In the Learning Phase (1≤t≤T), Synapse uses the history 

records of sensor events and services that happened during 

t=1, 2…T to compute A(i,j)=P(Xt=j|Xt-1=i) and P(Yt|Xt). 

We assume that sensor events, which happened in a certain 

interval before a service, indicate the situation in which this 

service is used. For instance, in Figure 2, E2 and E3 indicate 

the situation in which S2 is used. Since Xt cannot be 

observed directly, we firstly use the forwards-backwards 

algorithm [17] to infer X1:T from the observation Y1:T. In 

the forwards pass, we recursively compute the filtered 

estimate αt=P(Xt=i|Y1:t), and in the backwards pass, we 

recursively compute βt=P(Yt+1:T|Xt=i); then combine them 

to produce the smoothed estimate γt(i)=P(Xt=i|Y1:T) and the 

smoothed two-slice estimate ξt-1,t|T(i,j)=P(Xt-1=i,Xt=j|Y1:T). 

After that, we use EM (expectation maximization) 

algorithm [17] to learn A(i,j)=P(Xt=j|Xt-1=i) and  P(Yt|Xt) 

from γt(i) and ξt-1,t|T(i,j). 

 

Fig. 2: One Cycle of Synapse Model. The grey rectangles 

indicate a certain interval before St. 

In the Executing Phase (t>T), Synapse uses the learned 

transition matrix A(i,j)=P(Xt=j|Xt-1=i), observation model 

P(Yt|Xt) and the current observation Yt  to compute the 

occurrence probability of each service. A two-step filtering 

algorithm is applied: in update step, the probabilities of 

current state can be gained as we compute P(Xt|Yt); in 

predict step, the probabilities of next state can be predicted 

as we compute P(Xt+1|Yt). As a result, the occurrence 

probability of each service can be computed as the 

occurrence probability of each state corresponding to these 

services. After that, we can sort the services in a descending 

order of probability. If a probability is higher than a user-

defined threshold, the corresponding service will 

automatically start in Active Mode. The top 5 services will 

be recommended as a list to the user interface in Passive 

Mode. Passive Mode is mainly used in Synapse. All these 

algorithms are implemented on Matlab. 

User Interface 

Synapse provides a user interface in XML form on Matlab 

Web Server. Users can browse this web through PC, PDA, 

or cellular phone, and start a service by selecting the service 

ID. The recommended service list on this web can 

automatically update after a fixed interval, or be manually 

updated by users.  

PRELIMINARY EVALUATION OF SYNAPSE 

In order to examine the practicability of our methods, we 

implemented three simple scenarios on the smart home test 

bed, and preliminarily evaluated Synapse on three aspects: 

1) feasibility of Synapse, which means whether Synapse can 

successfully provide services based on the learned habits 

and the current sensor events, 2) time complexity of 

algorithms, which examines whether it is practically quick 

enough to gain the results,  3) correctness of the 

recommendation, which examines whether the results of 

prediction are practically accurate enough.  

Feasibility of Synapse  

Using the sensors and devices mentioned in section 3, we 

collected 200 training samples: 40 of which are “Light” 



scenario using “Light_On” service, 80 of which are “TV” 

scenario using “Video” and “TV_1ch” services (40 

respectively), and 80 of which are “Music” scenario using 

“M_Mute” and “M_Loud” services (40 respectively). Each 

sample is a combination of one service and a group of 

sensor events. For instance, in “Light” scenario, when a 

user was in the room and it was too dark, he selected 

“Light_On” service, so the user’s ID, the brightness and the 

“Light_On” service were recorded as one training sample. 

We used such training samples to learn users’ habits in 

three scenarios. 

After learning, we changed the status of users and 

environment, and Synapse successfully provided dynamic 

services adapting to the changed situation. For instance, in 

“Music” scenario: when we was using the phone, Synapse 

provided “M_Mute” to turn down the volume of the music 

player; when we finished using the phone, Synapse 

provided “M_Loud” to turn up the volume. These were 

collected as test samples, which were used to examine the 

correctness of recommendation. 

Time Complexity of Algorithms 

We simulated the time complexity of algorithms on Matlab. 

The number of hidden state – M and the number of training 

sample – T are important to estimate the complexity. 

In the Learning Phase, if there are M hidden states, it will 

take O(M
2
) operations at every time slice, since we must do 

several matrix-vector multiplies per time slice. And as we 

must repeat this procedure during t=1, 2…T, it will totally 

take O(M
2
T) time. In the Executing Phase, algorithms do 

approximately the same work as learning algorithms do at 

one time slice. Therefore, the time complexity is O(M
2
). 

Figure 3 depicts the time complexity of learning algorithms.  

Figure 3 shows that for 50 states and 2600 training samples, 

it takes approximately 80 seconds to learn the parameters, 

which reveals that our methods are practically quick enough 

for real life. 
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Fig. 3: (a) shows the relation of Time and T. (b) shows the 

relation of Time and M. The green curve is quadratic, and 

the blue one is linear. 

Correctness of Recommendation 

We verified the correctness of recommendation with 150 

test samples: 30 of which are “Light” scenario test samples, 

60 of which are “TV” scenario test samples (30 for Video, 

30 for TV_1ch), and 60 of which are “Music” scenario test 

samples (30 for M_Mute, 30 for M_Loud). We only tested 

correctness of the first recommendation because of the 

definitude of result. (The correctness of top 5 

recommendations will be tested by real inhabitants in the 

future.) The correctness of recommendation is shown on 

Table 1, which reveals that our methods are practically 

accurate enough for real life. 

Table1: Correctness of Recommendation 

Services
 

 Light_On Video TV_1ch M_Mute M_Loud  

Correct 96.7% 93.3% 90.0% 93.3% 90.0% 
 

CONCLUSION AND FUTURE WORK 

In this paper, we presented a context-aware service 

platform – Synapse and its smart home test bed. By 

exploiting the recorded histories of contexts and services, 

Synapse can learn the users’ habits. After that, Synapse can 

predict the most relevant services that users will use in 

current situation based on their habits, and provide services 

in Active Mode and Passive Mode. We described our 

algorithms and the implementation of smart home test bed 

in detail. The preliminary evaluation with real world data 

revealed that Synapse was practicable and should be built at 

home.  

Now we are extending the sensor and service parts and 

implementing an entire Synapse system in a house. The 

experiment with real inhabitants will be conducted in the 

future. 
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