
A Stochastic Approach for Creating Context-aware

Services based on Context Histories in Smart Home

Hua Si, Yoshihiro Kawahara, Hiroyuki Morikawa, Tomonori Aoyama

Aoyama Morikawa Lab, Hongo Campus Bldg #3.

Department of Information and Communication Engineering, Faculty of Engineering,

The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 JAPAN

+81 3 5841 6710

{sihua, kawahara, mori, aoyama}@mlab.t.u-tokyo.ac.jp

ABSTRACT

In this paper, we present a context-aware service platform

called Synapse and its simple smart home test bed. By

exploiting the recorded histories of contexts and services,

Synapse can learn different users’ habits. Then Synapse can

predict the most relevant services that users will use in the

current situation based on their habits, and provide services

in Active Mode and Passive Mode. Considering the

challenges faced, we apply a stochastic approach –

Bayesian Networks [17] to build the model of Synapse, and

implement a flexible, end-user manageable system, which

can absorb various uncertainties from multi-dimensional

sensor data and provide personalized services.

Keywords

Context-aware service, HMM (Hidden Markov model),

context histories, smart home

INTRODUCTION

Context-awareness is now regarded as a key ingredient for

pervasive computing, and several toolkits such as Context

Toolkit [21] and Location Stack [4] have been proposed to

incorporate users’ contexts into network applications. An

attractive category of context-aware applications is the

service automation in the indoor environment such as home

and office [15], which aims at providing users with dynamic

services that adapt to changing environment on the basis of

users’ habits. Obviously, the best ground for learning users’

habits exists in the recorded histories of the users’

interactions in context (context histories for short). The

usefulness of location history has been explored to report

users’ mobility patterns in an office [13]. However, in the

real world applications, users’ contexts contain diversity,

from users’ activities to environmental status; and users’

habits vary widely, from the usage of services to the

mobility patterns. Therefore, a dynamic mechanism is

necessary, which can provide various services by taking the

users’ contexts into account. We are developing a context-

aware service platform – Synapse, which can learn different

users’ habits by exploiting the recorded histories of contexts

and services, then predict and provide the most relevant

services that users will use in the current situation based on

their habits. We are implementing a smart home test bed of

Synapse, and three simple scenarios are used to examine the

practicability of our methods.

The following “daily scenarios” are assumed to be learned

from users’ context histories, and are used for evaluation:

• The “Light” Scenario: if it is too dark in the room,

Synapse will automatically turn on the light.

• The “TV” Scenario: Synapse will recommend TV

programs appropriate for people in the living room. (If

only kids are watching TV, cartoon videos will be

recommended. When parents and kids are watching TV

together, Discovery or some other channels will be

recommended.)

• The “Music” Scenario: Synapse will automatically

turn down the volume of the music player when someone

is using the phone, and turn up the volume after using it.

We faced several challenges when we designed our system.

First, considering the flexibility of system and the ease of

management for end-users, we should apply a dynamic

mechanism rather than binding the contexts and services in

a specification language such as ECA [12]. Second, since

users’ habits may slowly change as time advances, our

algorithms should have the ability of updating to reflect it.

Third, corresponding to the diverse contexts (such as “the

user is sitting”, “the brightness in a room”) and various

services (such as “turn on light”, “select TV channel 3”),

our model should have the capability to deal with multi-

dimensional inputs and outputs. Fourth, personalized

services are desired by different users. Finally, the system

should work with imperfect and noisy sensor data.

With these challenges in mind, we apply a stochastic

approach for Synapse, which is based on one of Bayesian

Networks [17] – HMM (Hidden Markov Model) [18]. The

model of Synapse consists of continuous cycles. Each cycle

is composed of two phases: Learning Phase and Executing

Phase. In the Learning Phase, Synapse learns the

relationship between contexts (we call them “sensor events”

in Synapse) and services by exploiting the recorded

histories of them. Then in the Executing Phase, based on

the learned relationship and the current sensor events,

Synapse predicts the most possible services to be used and

provides them to users. Since users would like to enjoy

autonomous services in a moderate degree without losing

control of them [2], Synapse provides services in two

modes: Active Mode will start a service automatically

based on sensor events, while Passive Mode recommends

the top 5 relevant services in a list and let users select. The

results of the Learning Phase are used as prior knowledge

for the next cycle. To easily achieve personalization, user

ID is treated as a sensor event.

The related works of time-series prediction and smart home

projects will be introduced in section 2. The architecture of

Synapse will be explained in section 3. The preliminary

evaluation of Synapse will be discussed in section 4. The

conclusion and future work will be given in section 5.

RELATED WORKS

For time-series prediction of continuous data, linear models

(such as ARIMA, ARMAX [5]) or non-linear models (such

as neural networks or decision trees [14]) are usually used.

For discrete data, n-gram models [8] or variable-length

Markov models [20] are common choices. Compared to

these methods, Dynamic Bayesian Networks (DBN) [17]

have some advantages appropriate for the challenges we

face: First, it is easier for DBN to deal with multi-

dimensional inputs and outputs. Second, prior knowledge is

easy to be incorporated, so the prediction of the future is

based on all the past history. Third, DBN is more flexible

than simple supervised classifiers. Finally, DBN has been

successfully used in many areas [6, 11, 19] for time-series

prediction.

Therefore, we choose HMM [18], one of Bayesian

Networks, to build the core model of Synapse. This core

model is a general context-aware platform, which can be

used not only in smart home environment, but also in a

broad range of context-aware applications that need to

correlate the contexts and services, since it provides

standard interfaces for contexts and services.

Several smart home projects are in progress. The Georgia

Tech Aware Home [1] and MIT House_n [7] use an array

of sensors to determine users’ locations and activities

within an actual house. The Neural Network House [16]

balances the goals of anticipating user needs and energy

conservation through a neural network. The MavHome [3]

uses an intelligent and versatile home agent to perceive the

state of the home through sensors and act on the

environment through effectors. The industrial examples are

also available, such as the Microsoft Easy Living project,

the Cisco Internet Home, and the Verizon Connected

Family project. Although, similar with these projects, our

smart home test bed of Synapse extracts contexts from raw

sensor data and adopts services from smart devices, our

original core model guarantees the uniqueness of Synapse.

ARCHITECTURE OF SYNAPSE

The smart home test bed of Synapse consists of four parts:

1) the sensor event collection part that captures real world

information, 2) the service control part that provides

services, 3) the Synapse Core, and 4) the user interface.

Architecture of Synapse is shown in Figure 1.

Synapse Core

（Matlab）

W
ire
le
s
s
 s
e
n
s
o
r

U

3

W
ire
d

S
e
n
s
o
r

S
e
n
s
o
r A
g
g
re
g
a
to
r

IR
 R
e
m
o
te

C
o
n
tro
l

A
c
tu
a
to
r

C
o
n
tro
lS
e
rv
ic
e
 L
a
u
n
c
h
e
r

User In te rface

DB

Ma tlab web server

ODBC

U
S
B

H
T
T
P

U
D
P
 / IP

Media

P layer

U
3
W
ire
le
s
s
 N
e
tw
o
rk

C
o
n
te
xt In

fe
re
n
c
e

O
D
B
CR
F
ID

IP
IP

S ensor E vent

C o llectio n Serv ice C on tro l

Fig. 1: Architecture of Synapse.

Sensor Event Collection Part

The sensor event collection part captures real world

information from various sensors, converts raw data into

useful contexts (we call them “sensor events” in Synapse),

and records these sensor events in database. Sensor

Aggregator fuses the raw sensor data and reduces the noise.

For instance, the average temperature in a room is fused

from different temperature sensors. Context Inference

extracts complex events such as “the user is sleeping” from

simple events. On this test bed, 4 kinds of sensors are used

to produce 11 events: RFID is used to identify users, U
3

wireless sensor nodes [9] are used to capture the

temperature, brightness and human motion, a contact

detector detects whether the phone is in use, and an e-

calendar detects a day of the week.

All the sensor events are recorded as a time series {E1, E2

…} in database. Each sensor event is recorded as E (EN,

EV, ET), which respectively represents the event ID, the

event value and the time at which this event is recorded. We

predefine a set of events {e1, e2… eN} (such as e1 means

“temperature”, e2 means “brightness”), and EN ∈ {e1, e2…

eN}. Many context inference schemes can be used to

recognize events and their values from raw sensor data [10].

However, since event values are generated from different

types of sensors (e.g. the temperature is 25
o
C, and the

humidity is 60%), and it is difficult for a general core to

process all types of values, we use fuzzy sets [22]

approaches to unify all the event values between 0 and 1 as

in [10], which means EV ∈ [0, 1]. Basically, an event will

be recorded when the value changes. However, in many

scenarios, it is not necessary to record events as frequently

as they change, so we can add some requirements to event

recording. Events will not be recorded, until they satisfy

these requirements. (e.g. one requirement is “e1 is over 0.7”,

so e1 will not be recorded until it is over 0.7.)

Service Control Part

The service control part controls various devices to supply

services. Service Launcher operates as a proxy between

Synapse Core and the devices. It can receive a service ID

from Synapse Core through UDP/IP networks, and controls

the device corresponding to this service ID. It can also send

the ID of a selected service to Synapse Core for service

recording. As a result, it is easy for Synapse to add new

services, since Synapse Core can manage them with only

IDs, and ignore the various operations of different devices.

On this test bed, 4 devices are used to provide 23 services:

a light and a fan provide on/off services, a TV provides

on/off, 12 channels and 2 videos, and a music player

provides on/off and music mute/loud services.

All the services are recorded as a time series {S1, S2 …} in

database. Each service is recorded as S (SN, ST), which

respectively means the service ID, and the time at which

this service is recorded. We predefine a set of services {s1,

s2… sM} (such as s1 means “turn on light”, s2 means “mute

music”), and SN ∈ {s1, s2… sM}.

Synapse Core

We apply HMM to model the relationship between the

sensor events and the services. Figure 2 shows one cycle of

Synapse model. There are two basic components in HMM:

the hidden state Xt and the observation of state Yt. In

Synapse, each hidden state Xt corresponds to a service St

(not lowercase s), to indicate the situation in which this

service is used, and the observation Yt is a vector of event

values (y1, y2… yN), which are the current values of {e1,

e2… eN}. There are three parameters in HMM: the prior

probabilityπ(i)=P(X1=i) which represents the initial state,

the transition matrix A(i,j)=P(Xt=j|Xt-1=i) which represents

the probability of transfer from Xt-1=i to Xt=j, and the

observation model P(Yt|Xt) which represents the relation of

Xt and Yt [16]. The learned results in one cycle are used as

the initial estimations of the next cycle.

In the Learning Phase (1≤t≤T), Synapse uses the history

records of sensor events and services that happened during

t=1, 2…T to compute A(i,j)=P(Xt=j|Xt-1=i) and P(Yt|Xt).

We assume that sensor events, which happened in a certain

interval before a service, indicate the situation in which this

service is used. For instance, in Figure 2, E2 and E3 indicate

the situation in which S2 is used. Since Xt cannot be

observed directly, we firstly use the forwards-backwards

algorithm [17] to infer X1:T from the observation Y1:T. In

the forwards pass, we recursively compute the filtered

estimate αt=P(Xt=i|Y1:t), and in the backwards pass, we

recursively compute βt=P(Yt+1:T|Xt=i); then combine them

to produce the smoothed estimate γt(i)=P(Xt=i|Y1:T) and the

smoothed two-slice estimate ξt-1,t|T(i,j)=P(Xt-1=i,Xt=j|Y1:T).

After that, we use EM (expectation maximization)

algorithm [17] to learn A(i,j)=P(Xt=j|Xt-1=i) and P(Yt|Xt)

from γt(i) and ξt-1,t|T(i,j).

Fig. 2: One Cycle of Synapse Model. The grey rectangles

indicate a certain interval before St.

In the Executing Phase (t>T), Synapse uses the learned

transition matrix A(i,j)=P(Xt=j|Xt-1=i), observation model

P(Yt|Xt) and the current observation Yt to compute the

occurrence probability of each service. A two-step filtering

algorithm is applied: in update step, the probabilities of

current state can be gained as we compute P(Xt|Yt); in

predict step, the probabilities of next state can be predicted

as we compute P(Xt+1|Yt). As a result, the occurrence

probability of each service can be computed as the

occurrence probability of each state corresponding to these

services. After that, we can sort the services in a descending

order of probability. If a probability is higher than a user-

defined threshold, the corresponding service will

automatically start in Active Mode. The top 5 services will

be recommended as a list to the user interface in Passive

Mode. Passive Mode is mainly used in Synapse. All these

algorithms are implemented on Matlab.

User Interface

Synapse provides a user interface in XML form on Matlab

Web Server. Users can browse this web through PC, PDA,

or cellular phone, and start a service by selecting the service

ID. The recommended service list on this web can

automatically update after a fixed interval, or be manually

updated by users.

PRELIMINARY EVALUATION OF SYNAPSE

In order to examine the practicability of our methods, we

implemented three simple scenarios on the smart home test

bed, and preliminarily evaluated Synapse on three aspects:

1) feasibility of Synapse, which means whether Synapse can

successfully provide services based on the learned habits

and the current sensor events, 2) time complexity of

algorithms, which examines whether it is practically quick

enough to gain the results, 3) correctness of the

recommendation, which examines whether the results of

prediction are practically accurate enough.

Feasibility of Synapse

Using the sensors and devices mentioned in section 3, we

collected 200 training samples: 40 of which are “Light”

scenario using “Light_On” service, 80 of which are “TV”

scenario using “Video” and “TV_1ch” services (40

respectively), and 80 of which are “Music” scenario using

“M_Mute” and “M_Loud” services (40 respectively). Each

sample is a combination of one service and a group of

sensor events. For instance, in “Light” scenario, when a

user was in the room and it was too dark, he selected

“Light_On” service, so the user’s ID, the brightness and the

“Light_On” service were recorded as one training sample.

We used such training samples to learn users’ habits in

three scenarios.

After learning, we changed the status of users and

environment, and Synapse successfully provided dynamic

services adapting to the changed situation. For instance, in

“Music” scenario: when we was using the phone, Synapse

provided “M_Mute” to turn down the volume of the music

player; when we finished using the phone, Synapse

provided “M_Loud” to turn up the volume. These were

collected as test samples, which were used to examine the

correctness of recommendation.

Time Complexity of Algorithms

We simulated the time complexity of algorithms on Matlab.

The number of hidden state – M and the number of training

sample – T are important to estimate the complexity.

In the Learning Phase, if there are M hidden states, it will

take O(M
2
) operations at every time slice, since we must do

several matrix-vector multiplies per time slice. And as we

must repeat this procedure during t=1, 2…T, it will totally

take O(M
2
T) time. In the Executing Phase, algorithms do

approximately the same work as learning algorithms do at

one time slice. Therefore, the time complexity is O(M
2
).

Figure 3 depicts the time complexity of learning algorithms.

Figure 3 shows that for 50 states and 2600 training samples,

it takes approximately 80 seconds to learn the parameters,

which reveals that our methods are practically quick enough

for real life.

 (a) (b)

Fig. 3: (a) shows the relation of Time and T. (b) shows the

relation of Time and M. The green curve is quadratic, and

the blue one is linear.

Correctness of Recommendation

We verified the correctness of recommendation with 150

test samples: 30 of which are “Light” scenario test samples,

60 of which are “TV” scenario test samples (30 for Video,

30 for TV_1ch), and 60 of which are “Music” scenario test

samples (30 for M_Mute, 30 for M_Loud). We only tested

correctness of the first recommendation because of the

definitude of result. (The correctness of top 5

recommendations will be tested by real inhabitants in the

future.) The correctness of recommendation is shown on

Table 1, which reveals that our methods are practically

accurate enough for real life.

Table1: Correctness of Recommendation

Services

 Light_On Video TV_1ch M_Mute M_Loud

Correct 96.7% 93.3% 90.0% 93.3% 90.0%

CONCLUSION AND FUTURE WORK

In this paper, we presented a context-aware service

platform – Synapse and its smart home test bed. By

exploiting the recorded histories of contexts and services,

Synapse can learn the users’ habits. After that, Synapse can

predict the most relevant services that users will use in

current situation based on their habits, and provide services

in Active Mode and Passive Mode. We described our

algorithms and the implementation of smart home test bed

in detail. The preliminary evaluation with real world data

revealed that Synapse was practicable and should be built at

home.

Now we are extending the sensor and service parts and

implementing an entire Synapse system in a house. The

experiment with real inhabitants will be conducted in the

future.

ACKNOWLEDGMENTS

This work is supported by Ministry of Public Management,

Home Affairs, Posts and Telecommunications.

REFERENCES

1. Aware Home. http://www.cc.gatech.edu/fce/ahri/.

2. Barkhuus, L. Is Context-Aware Computing Taking

Control Away from the User? Proceedings of Ubicomp

2003, LNCS 2864.

3. Das, S. The Role of Prediction Algorithms in the

MavHome Smart Home Architecture. IEEE Wireless

Communications, vol. 9, no. 6, pp. 77-84, Dec. 2002.

4. Graumann, D., Lara, W. Real-world implementation of

the location stack: The universal location framework.

Proceedings of WMCSA 2003, 122–128.

5. Hamilton, J. Time Series Analysis. Wiley, 1994.

6. Horvitz, E. The lumiere project: Bayesian user modeling

for inferring the goals and needs of software users.

Proceedings of the Fourteenth Conference on

Uncertainty in Artificial Intelligence. 1998.

10 20 30 40 50
0

10

20

30

40

50

60

70

80

T
im

e
 (

s
ec

o
n
d
s
)

M (number of states)

Time VS M, T=2600

500 1000 1500 2000 2500
2

4

6

8

10

12

14

16

T
im

e
 (

s
ec

o
n
d
s
)

T (number of training sample)

Time VS T, M=20

7. House_n. http://architecture.mit.edu/house_n/.

8. Jelinek, F. Statistical methods for speech recognition.

MIT Press, 1997.

9. KAWAHARA, Y. Design and Implementation of a

Sensor Network Node for Ubiquitous Computing

Environment. Proceedings of IEEE Semiannual

Vehicular Technology Conference, 2003.

10. Korpipä, P. Bayesian approach to sensor-based context

awareness. Personal and Ubiquitous Computing, Vol. 7

Issue 2, July 2003.

11. Korvemaker, B. Predicting UNIX Command Lines:

Adjusting to User Patterns. National Conference on

Artificial Intelligence 2000, AAAI press, 230-235.

12. López, D., Katsiri, E. An ECA Rule-Matching Service

for Simpler Development of Reactive Applications.

IEEE Distributed Systems 2001, Vol. 2.

13. Mantoro, T. Location history in a low-cost context

awareness environment Proceedings of the Australasian

information security workshop conference on ACSW

frontiers 2003, Vol. 21.

14. Meek, C. Autoregressive tree models for time-series

analysis. Proceedings of the Second International SIAM

Conference on Data Mining 2002, 229–244.

15. Meyer, Sven. A survey of research on context-aware

homes. Proceedings of the Australasian information

security workshop conference on ACSW frontiers 2003,

Vol. 21.

16. Mozer, M. An intelligent environment must be adaptive.

IEEE Intelligent Systems, vol. 14, no. 2, pp. 11-13, Mar.

/Apr. 1999.

17. Murphy, K. Dynamic Bayesian Networks:

Representation, Inference and Learning. PhD

Dissertation, UC Berkeley, 2002.

18. Rabiner, L. R. A tutorial on Hidden Markov Models and

selected applications in speech recognition. Proceedings

of the IEEE 1989, 77(2):257–286.

19. Rao, S., Cook, D. J. Predicting Inhabitant Actions Using

Action and Task Models with Application to Smart

Homes, International Journal of Artificial Intelligence

Tools, 13(1), 81-100, 2004.

20. Ron, D., Singer, Y. The power of amnesia: Learning

probabilistic automata with variable memory length.

Machine Learning 1996, 25.

21. Salber, D., Dey, A.K. The context toolkit: Aiding the

development of context-enabled applications. Technical

report (2000), Georgia Institute of Technology.

22. Zadeh, L.,”Fuzzy sets”, Information and Control 8:338-

353, 1965.

BIOGRAPHIES

Hua Si received the B.E. in Electronic Techniques and

Information Systems from Tsinghua University, Beijing,

China, in 2002. He is currently a master student of the

Graduate School of Information Science and Technology at

the University of Tokyo with an emphasis on ubiquitous

middleware applications and machine learning. He is a

student member of IEEE and IEICE.

Yoshihiro Kawahara received the B.E., M.E., and Dr.

Eng. degrees in Information Science and Technology from

the University of Tokyo, Tokyo, Japan, in 2000, 2002, and

2005, respectively. He is currently a Research Associate of

the Graduate School of Information Science and

Technology at the University of Tokyo. His research

interests are in the areas of context-aware computing,

computer networks, and wearable computing. He is a

member of IEEE, IEICE, and IPSJ.

Hiroyuki Morikawa received the B.E., M.E., and Dr. Eng.

degrees in electrical engineering from the University of

Tokyo, Tokyo, Japan, in 1987, 1989, and 1992,

respectively. He is currently an Associate Professor of the

Department of Frontier Informatics at the University of

Tokyo. From 1997 to 1998, he stayed in Columbia

University as a visiting research associate. His research

interests are in the areas of computer networks, ubiquitous

networks, mobile computing, and wireless networks. He

serves as Editor of Transactions of Institute of Electronics,

Information and Communication Engineers (IEICE) and on

the technical program committees of IEEE/ACM

conferences and workshops. He is a member of IEEE,

ACM, ISOC, IPSJ, and ITE.

Tomonori Aoyama received the B.E., M.E. and Dr. Eng.

from the University of Tokyo, Tokyo, Japan, in 1967, 1969

and 1991, respectively. Since he joined NTT Public

Corporation in 1969, he has been engaged in research and

development on communication networks and systems in

the Electrical Communication Laboratories. From 1973 to

1974, he stayed in MIT as a visiting scientist to study

digital signal processing technology. In 1994, he was

appointed to Director of NTT Opto-Electronics

Laboratories, and in 1995 he became Director of NTT

Optical Network Systems Laboratories. In 1997, he left

NTT, and joined the University of Tokyo. He is currently

Professor in the Department of Information and

Communication Engineering, Graduate School of

Information Science and Technology, the University of

Tokyo. His research activities cover the next generation

networking technologies from layer 1 (e.g. photonic

networks) to higher layers including middleware for

network collaboration, P2P routing, mobile networking, and

ubiquitous networking. Dr. Aoyama is involved in several

governmental projects such as Japan Gigabit Network

(JGN) and the Ubiquitous Networking Forum, and in some

non-profit organizations and consortiums such as the

Photonic Internet Forum (PIF) and the Digital Cinema

Consortium (DCC) in which he is serving as Chairman. Dr.

Aoyama is IEEE Fellow and was a Members-at-Large of

the IEEE ComSoc Board of Governors. He served as

President of IEICE Communication Society. He also served

Chair of IEEE ComSoc Japan Chapter. He is a member of

IPSJ and IEEE.

