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ABSTRACT

This paper presents a context processing system, which
stores context in an appropriate data structure and can
provide a selective context history to a range of applica-
tions. Artificial Immune System algorithms are used to
achieve data reduction, continuous online learning and
forgetting of obsolete context.
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INTRODUCTION
In order to set the scene for the content of the paper we
first clarify our working dependencies:

Context is any information that can be used to
characterize the situation of an entity. An entity is
a person, place, or object that is considered rele-
vant to the interaction between a user and an appli-
cation, including the user and applications them-
selves [1].

Context history is the total collection of recorded
past context.

Context memory is a mechanism for retaining and
recalling interesting and relevant past experience.

The objective of our research is to build a context pro-
cessing system which only stores relevant context in a
context memory. The stored context is used to pro-
vide context-aware applications with a selective context
history, or context memory; we believe such a system
should fulfil the following requirements:

e Minimal amount of storage: Storing all context is
intractable [7, 2], therefore the amount of stored con-
text data needs to be kept to a minimum; by remov-

ing duplicate context data and ‘forgetting’ potentially
obsolete context data we construct a context memory
(i.e., a selective context history).

e Layered design: The system should be designed with
a layered approach (see Figure 1) which provides ser-
vices and information to a number of applications.

e FEpisodic memory: Relationships between consecutive
events need to be highlighted [6].

o Contert data should be smoothed: When the users’
behaviour changes, the systems’ perception of the
users’ common behaviour should change gradually,
as a sudden change is not desirable [11]. The system
should also not be affected by noisy context data.

o Ubiquitous environment: The system needs to be
made available on small, portable, resource-constrained
devices and it needs to work in a range of networking
environments with the real possibility that it must
spend a proportion of time working with no connec-
tivity.

o Fvery day environments: In order for the system to
diffuse into every day environments, the user should
not be required to be an active part of the system.
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Figure 1. Layers.

Our proposal focuses on context data of an individual
person. In order to create such a context memory we
capitalise on techniques developed in the field of Ar-
tificial Immune Systems, as we believe they fulfil the



above requirements. A widely accepted definition of an
Artificial Immune System (AIS) is:

Artificial immune systems are adaptive systems, in-
spired by theoretical immunology and observed im-
mune functions, principles and models, which are
applied to problem solving [3].

For a system to qualify as an AIS it is required to have
a minimum level of immunological inspiration incor-
porated, such as a model to perform pattern match-
ing. AISs are often associated with virus detection,
but their strengths are further reaching: they can per-
form pattern recognition, data compression, supervised
and unsupervised learning, and be used to construct
specialised memory structures. Calling something im-
munological does not make it an AIS. For a detailed
introduction to AIS see [3] and [4].

In our context processing system we make use of AIS
memory mechanisms, in particular Artificial Recogni-
tion Balls (ARBs) [10] which enable us to perform data
reduction. A detailed explanation of ARBs is given in
Section ; other AIS techniques relevant to our work are
discussed in a previous paper [9)].

Section describes our context processing system and
Section presents our conclusions.

CONTEXT AWARE IMMUNE SYSTEM

In order to explain our Context Aware Immune System
(CAIS) we define the representation of the components,
the affinity measures which are used to quantify the
interactions of the elements, and the algorithm which
governs the behaviour of CAIS.
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Figure 2. Data structure.

Representation:

The input to and output from CAIS is context rep-
resented by an attribute vector, {(ai,as,...,ay), which
contains attributes (which can appear in an arbitrary

order) along with their attribute identifier; for exam-
ple:

( Location.Building = Library,
Wlan.MacAddress = 0A:40:C3:8D:00:32,
Time.Hour = 18:30,

Activity = Meeting )

Where Location.Building, Wlan.MacAddress,
Time.Hour, and Activity are attribute identifiers, and
Library, 0A:40:C3:8D:00:32, 18:30, and Meeting are
their respective values.

In order to store the attributes CAIS makes use of
ARBs, which enable CAIS to perform data reduction
since an ARB represents all elements in a region (in our
case a ‘region’, and hence an ARB, is a hyper-sphere)
eliminating the need for repetition. For example, a
place of interest can be represented by an ARB instead
of all individual GPS co-ordinates which fall within its
radius; we associate an ARB with a resource level R,
which increases when data points fall within its radius,
and decreases by a constant decay. The radius r is a
function of the resource level: f(R) =r.

The memory is an n-dimensional hierarchical network
structure, where each dimension represents a different
class of attributes. The attribute identifiers in our above
example indicate to which dimension an attribute be-
longs, for example Time.Hour indicates that 18:30 be-
longs to the dimension ‘time’. Figure 2 shows an ex-
ample of the prototype data structure. The example
consists of three dimensions and nine ARBs (drawn as
small numbered circles). ARBs from different dimen-
sions which appear in the same context are connected
by cross-dimensional-links — this mechanism exploits
the information present in the relations between con-
text attributes. Furthermore, these links have a re-
source level L associated with them which reflects the
likelihood that these two attributes occur in the same
context. In our example ARB4 and ARBs link dimen-
sions Dy and D5, and ARB and ARBg link dimensions
Dy and Dj3. Furthermore, every dimension itself con-
tains a network structure, for example dimension D;
contains ARB4 and ARBs5. In this structure, ARBs are
connected with each other to highlight the relationship
between consecutive events, which enables us to create
an episodic memory. These links are associated with
a resource level E to reflect the likelihood of certain
events happening after each other.

Affinity Measures:

Every dimension has an affinity measure associated with
it, which is used to determine the similarity between
elements belonging to this dimension — for example,
we use Euclidean distance to determine the simlilarity
between GPS co-ordinates.



Figure 3. A snapshot of context memory, where the 65 circles represent ARBs. The smaller circles
close to A and B show that these areas are stored with a high granularity.

Algorithm:

The algorithm used by CAIS is based on the principles
of unsupervised and reinforcement learning and uses a
combination of the representation and affinity measures
described above; a suitable definition of unsupervised
learning is:

In unsupervised learning or clustering there is no
explicit teacher, and the system forms clusters or
“natural groupings” of the input patterns. “Natu-
ral” is always defined explicitly or implicitly in the
clustering system itself [5].

Reinforcement learning can be defined as:

Reinforcement learning addresses the question of
how an autonomous agent that senses and acts in
its environment can learn to choose optimal actions
to achieve its goals. Each time the agent performs
an action in its environment, a trainer may provide
a reward or penalty to indicate the desirability of
the resulting state [8].

Unsupervised learning allows us to construct a system
which can cluster input data without any prior knowl-
edge of the classes of the data. Reinforcement learning
requires feedback from a trainer. However, an explicit
trainer is not present in most context-aware systems,
therefore an ARB in our system receives positive feed-
back when context attributes fall within its radius, and
negative feedback is introduced by the notion of ‘for-
getting’, which gradually decays all resource levels. For

example, locations a user visits often have their rating
reduced, but every visit increases the rating, which en-
ables these locations to remain in the system. This also
enables the system to reduce obsolete data, making the
amount of data stored more manageable. Smoothing
of context data is achieved by stimulation and decay
of context attributes. The minimum amount of time
an attribute remains in the system is controlled by the
decay mechanism.

Having explained the individual components of CAIS,
we now explain how they fit together. When CAIS re-
ceives an attribute vector the context processing algo-
rithm selects the first attribute a and searches for the
dimension it belongs to. In Figure 2 this might be at-
tribute 1, which belongs to dimension Dy. Having found
the dimension, it searches it for an ARB— using the
appropriate affinity measure— which already covers the
area of a; if such an ARB is found it is stimulated, which
results in an increase in its resource level, R. If no such
ARB exists, a new ARB is centered at a and initialised
with a default resource level. The system then checks
if the stimulated or newly created ARB matches the
criteria for being part of an episode (e.g. if it is encoun-
tered shortly after the previously stimulated one); if it
does, an existing link to the previous ARB is stimulated
(e.g. the link between 4 and 5) or, if one does not exist,
a new link is created with a default resource level, E.
This process is repeated with all attributes in the vec-
tor. Next the system searches for existing links between
attributes from this vector (e.g. cross-dimensional-link
between 2 and 5). If links exist they are stimulated,



otherwise new ones are created with a default resource
level, L. All ARBs and all links between them are sub-
ject to a decay mechanism to control the population.

If an outlier is chosen as the center of an ARB, this
ARB will not receive enough stimulation and will die
out, as the loss of resources due to the decay mecha-
nism is higher than the resource gain. If the centre of
an ARB is a sub-optimal center for the area which is
covered by this ARB, the centre needs to be shifted.
This is achieved by the stimulation and decay mecha-
nisms. For example, if a person spends most of his time
in his office, but the initial ARB covering the area of
the building is created using the entrance as the centre
of the ARB, the ARB should be shifted to a centre close
to the persons’ office. This shift happens when the ini-
tial ARB is stimulated to such a degree that it does not
cover the area of the office any more, as the next loca-
tion recorded outside this region, which is most likely
to be close to the office, will form the centre of a new
ARB. The new ARB will quickly gain resources as it is
stimulated by the high activity in the area of the office,
and the initial ARB will grow again as the activity in
the area of the office now stimulates the new ARB. This
process happens gradually over time and highlights the
dynamic nature of CAIS.

A context-aware application may need access to cur-
rent context, but also to context memory in order to
identify recurring situations. As shown in Figure 1 a
context-aware application may either query the under-
lying current context or the context memory [12]. If it
requires current location data, for example to predict a
route, it would obtain matching previous context data
from the context memory.

Figure 3 presents preliminary results with a small sub-
set of GPS co-ordinates. The data set consists of 3000
GPS data points which where collected by a single per-
son over a period of 46 days. In the experiment we
simulate this period by iterating through the data set.
The 3000 data points are reduced by the algorithm to
65 (not all are visible in the figure), showing its data
reduction capabilities. A large proportion of the data
points where collected around position A and a slightly
smaller proportion around position B, this is reflected
in Figure 3 by small circles — representing a high data
granularity. Less frequently visited areas and commonly
traced routes have a lower data granularity and are re-
flected by larger circles.

CONCLUSION

Context memories have a great potential to improve
context-aware systems, but constructing context mem-
ory structures or selective context histories is not
straightforward. Such systems should be usable by mul-
tiple applications, therefore they need to be designed in
such a way that they are generic enough to serve dif-
ferent applications. In an ideal world we want context
processing systems to be able to generalise, be adapt-

able, and be able to compress or reduce the amount
of data stored; immune inspired algorithms are good
candidates, as they offer us mechanisms to fulfil all the
requirements.

In this paper we propose an immune inspired context
memory, which can adapt to a wide variety of user be-
haviour and environmental inputs. This is achieved by
using immunological metaphors and immune inspired
algorithms combining unsupervised and reinforcement
learning.
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