
Conflict Resolution Method utilizing Context History
for Context-Aware Applications*

Choonsung Shin and Woontack Woo
GIST U-VR Lab.

Gwangju 500-712, S.Korea
{cshin, wwoo}@gist.ac.kr

ABSTRACT
In this paper, we propose Conflict Manager to resolve
conflicts for context-aware applications in smart home
environments. Conflicts arise when multiple users access
an application or when various applications share limited
resources to provide services. In order to resolve conflicts
among users, the Conflict Manager assigns priority to each
user so that the user with the highest priority can be
selected by exploiting conflict history of users. In addition,
Conflict Manager detects and resolves conflicts among
applications by utilizing preferences of users and properties
of the services. To show the usefulness of the proposed
conflict resolution method, we apply the proposed conflict
resolution method to ubiHome, a smart home test-bed. The
experimental results proved that Conflict Manager enable
context-aware applications to offer personalized services to
multiple users by resolving service conflicts among
applications as well as among users.

Keywords
Context-Awareness, service conflict, context history

INTRODUCTION
The aim of ubiquitous computing is to provide users with
intelligent services based on the information obtained from
distributed but invisible computing resources. These
services do not require any cumbersome interface or
leaning procedures for users to use them. Especially
context-aware applications offer appropriate services to
users by utilizing contextual information of environment
including users [1]. This information is obtained from
various sensors or computing resources distributed in our
daily life. However, conflicts occur in context-aware
applications when multiple users share the applications or
these applications share the limited resources in
environment. Service conflict among users is the scenario
when multi-users access an application, and then the
application have to choose one user to provide a
customized service. As a result, the applications could not

make a suitable decision to start a service, and each user
may not receive personalized services. Resource conflicts
also occur among services if each service attempts to share
resources at the same time. Consequently, applications start
serving to the users without possessing all the necessary
resources and thus may result in unsatisfactory services.
Over the last decade, most research, aimed on resolving
conflicts, has been done on smart home and intelligent
office. Reactive Behavioral System (ReBa) supports
conflict resolution among devices in office environment
such as, between electric lamps, display devices, and
telephones [2]. RCSM (Reconfigurable Context-Sensitive
Middleware for Pervasive Computing), an object-based
framework, makes sensors and application services
independent, forms ad-hoc communication between them,
and delivers the necessary context to the applications [3].
However, context management in the previous research has
various limitations when they are applied to multi-user
environment with various applications. In the case of ReBa,
it is difficult to provide to each user with particular services
because ReBa focuses on the service for grouped users by
inferring main activities from the environment [2]. In
RCSM, context management does not consider shared
devices or services because contextual information services
are provided only through individual device possessed by
each user [3]. *
In this paper, we propose Conflict Manager to resolve
service conflict caused by the use of applications among
multiple users and limited resources among multiple
applications. The proposed Conflict Manager consists of
three parts: i) User Conflict Manager which resolves
conflict among users , ii) Service Conflict Manager which
resolves conflict among services, and iii) Conflict History
Manager which assigns priority to conflicting context by
utilizing conflict history. Conflict Manager resolves the
conflicts among users by choosing a user having the
highest priority. In addition, the proposed Conflict
Manager detects and resolves conflicts among applications
by utilizing properties of services and relationship among
them.

* This works was supported by DSC of Samsung

Electronics Co., Ltd., in Korea

This paper is composed as follows. First of all, we
introduce service conflicts caused by multiple users and
multiple applications in context-aware computing
environments. We also classify the service conflicts into
three types according to conflict sources. We then describe
Unified Context-aware Application Model for ubiquitous
computing environment (ubi-UCAM). We then introduce
Conflict Manager which resolves services conflicts among
users and among applications. Finally, we explain the
experimental results of applying this method to ubiHome
test-bed.

CONFLICTS IN CONTEXT-AWARE APPLLICATIONS
In context-aware computing environments, various
applications provide users with customized services based
on users’ contexts within a service area. In order to provide
the services, the applications require one or more
resources, such as display device, sound device, light
device, or, etc, according to their properties. Furthermore,
in such service environments, the number of users
accessing the same applications is not limited.
Unlike single user and single service environment,
applications in the computing environment have to respond
while considering other applications and various users
within a services area. We define such situation as a service
conflict. We classify the conflict into three types according
to sources of conflicts: service conflicts among multiple
users, service conflicts among multiple applications and
service conflicts among multiple users and multiple
applications. Service conflicts among users are caused due
to use of an application by multiple users. In this situation,
the application has to choose one customized service. For
example, a service conflict arises when users A and B are
trying to watch their preferred broadcasts from television
service. Service conflicts among multiple applications are
caused by providing of services among multiple
applications. Due to the conflict, the application cannot
provide users with customized responses. For instance, this
kind of conflicts occurs when television application and
music application start to provide their customized services
simultaneously. Service conflicts among users and
applications are caused due to the use of multiple services
by multiple users. This kind of conflict is similar to the
conflict among applications, but the users assigned to the
applications are different. For example, a service conflict
arises when user A is trying to use a television application
while user B is trying to use a music application.
To deal with these conflicts, resolution methods have to
resolve the conflict according to sources of conflicts.
Furthermore, in order to reflect the change of users’
preferences and their environment, the conflict resolution
methods must adapt to users and their environment. In this
paper, we deal with two kinds of conflicts, i.e. among users
and among services, by utilizing conflict history of users as
well as user contexts and service profiles.

UNIFIED CONTEXT-AWARE APPLICATION MODEL
In order to deal with service conflicts, we adopt Unified
Context aware-Application Model for ubiquitous
computing environment (ubi-UCAM) [4]. The ubi-UCAM
is a context-based application model to provide users with
personalized services by exploiting context in ubiquitous
computing environments. In addition, to ensure
independence between sensors and services, the ubi-
UCAM utilizes unified context represented as 5W1H
(Who, What, Where, When, How and Why) [4]. The ubi-
UCAM employs different types of unified context based on
the role of each context. These include preliminary context,
integrated context, conditional context, and final context.
Figure 1 shows the overall architecture of the ubi-UCAM.

Context Manager

Service Provider

Self Configuration Manager

Context IntegratorIn
te

rp
re

te
r

ubiService

ubiSensor
Self Configuration Manager

Preliminary Context Generator

Signal processing

FCPC/FC PC/FC FC

PC

ubiService

FC’

UCC

FC/IC

SCC/SS

FC/PC

FC

FC: Final Context
PC: Preliminary Context
IC: Integrated Context
SCC: Service Conditional context
SC: Service Status
UCC: User Conditional context

A sensor

UCC’

Network

PC

Figure 1. ubi-UCAM

As shown in Figure 1, the ubi-UCAM is composed of
ubiSensors, a sensor, and ubiServices, an application to
provide a service. Each ubiSensor generates a preliminary
context from the features extracted from a physical sensor.
It then delivers the preliminary context to ubiServices
within a service area. Each ubiService collects preliminary
contexts as well as final contexts delivered from other
ubiServices within a service area. The ubiService then
builds integrated context of each user by classifying the
preliminary contexts and final contexts. It searches
conditional context from a Hash table, which manages
specific service action and condition, corresponding to
each integrated context. It generates a final context to be
used by Service Provider after resolving conflicts among
users and services. Finally, ubiService executes appropriate
action with parameters described in the final context. It
utilizes application-specified methods which are
programmed by application developers.

CONFLIICT MANAGEMENT
In ubi-UCAM, service conflicts occur not only due to
multiple users who access ubiServices at the same time, but
also due to multiple ubiServices trying to share resources in
their surrounding. To resolve service conflicts among
users, the proposed Conflict Manager assigns priority to
users and chooses the user given the highest priority. In
addition, to deal with service conflict among ubiServices,
the Conflict Manager detects and resolves conflicts, based
on the properties of ubiServices and relationship between

them. Moreover, priority of users and ubiServices are not
fixed, but adapts to user's preference and behaviors.
Therefore, the Conflict Manager not only resolves conflicts
among users and among ubiServices, but also dynamically
assigns priority to users and ubiServices.

Conflict Resolution among Users
User Conflict Manager resolves conflicts caused by users
who try to use ubiServices within a service area. To resolve
the conflict, User Conflict Manager manipulates user
contexts in two steps: building a conflict list and selecting a
proper user from it. Figure 2 depicts the overall procedure
of User Conflict Manager.

Build
A conflict list

Choose
A user context

User 1 5W1H

5W1H

5W1H

User1 5W1H

User conflict list

Selected user context

Context priority

User context

Matched user context

User 2

User 3 H
istory M

anaging

User1 5W1H

5W1HUser2

Conflict History Manager

Context query

Feedback context

Conflict context

User 1
- - -

User N

User 1
- - -

User N

Conflict history

Weight Table

Figure 2. User Conflict Manager
As shown in Figure 2, User Conflict Manager makes a
conflict list of matched user context on users who are
expected to cause conflict among users, including those
who are currently using the service. In this process, users
who leave the service area are excluded from the list
because we assume they do not want to use the service any
more. In addition, user’s feedback is also delivered to
Conflict History Manager. The context is considered as
user feedback if there is user implicit context such as
remote controller. In the next stage, User Conflict Manager
chooses one user from the conflict list based on user’s
priority calculated from Conflict History Manager
according to user context. In this process, conflicts are
handled in several ways according to the number of users
within the service area. In the case of one user situation, we
know that there is no conflict among users. Therefore, User
Conflict Manager just selects the user context as a result of
conflict resolution. However, we have to consider the
situation when there are more than two users in a service
area. In this situation, User Conflict Manager selects the
user having highest priority because conflicts may occur. In
addition, it notifies the result of conflict resolution to
enable Conflict History Manager to store conflict context.

Conflict Resolution among ubiServices
Service Conflict Manager resolves services conflicts
caused by multiple ubiServices trying to share resource in
the service area. The conflicts are caused by not only a
ubiService itself but also other ubiServices. Therefore,
Service Conflict Manager deals with the conflict in two
ways: conflict caused by other ubiServices and conflict

caused by a ubiService itself. Figure 3 shows Service
Conflict Manager.

5W1H

5W1H

Outward
conflict

Bully
Selector

Servicer2 5W1H

5W1H

5W1H

User1 5W1H

Final context

Conflict-resolved context

Service context

5W1H

Selected
Final context

Servicer3

Servicer4

Servicer4

Servicer5
User 1Inward

Conflict

Selected user context

Context priority

Conflict History Manager

context Query

Feedback context

Conflict context

H
istory M

anaging

Svc 1
- - -

Svc N

Svc 1
- - -

Svc N

Conflict history

Weight Table

Figure 3. Service Conflict Manager

As shown in Figure 3, Service Conflict Manager creates a
context which contains information about the ubiService
and its stop action, if resources involved in other
ubiServices are the same as those of the ubiService itself.
As a result, the application responds to changes of other
ubiServices which cause conflict, using final contexts
coming from other services. In addition, Service Conflict
Manager updates the final context to the final context table.
Service Conflict Manager prevents this ubiService causing
conflict with other ubiServices. To detect possible
conflicts, it checks to see if there are any services using the
same resource before delivering the context. Service
Conflict Manager compares priority of the service contexts
calculated from Conflict History Manager if there are
conflict services within a service area. Finally, it sends the
conflict-resolved context to Final Context Generator when
there aren’t any services related to the same resource. In
addition, Service Conflict Manager just sends the resolved
context to Conflict History Manager to notify the result of
conflict resolution.
Service Conflict Manager also deals with the situation
when multiple services want to use resources at the same
time. This is because ubiServices can respond to the same
condition. In the case of this conflict, several ubiServices
want to use the same resource. For example, television and
movie services can be triggered at the same time when a
user enters home. To deal with this situation, we adopt
bully algorithm that elects a leader among processes in
distributed computing environment. The algorithm chooses
a coordinator having the highest priority among processes
[7]. In service conflict, the algorithm is used to choose the
highest ubiService among ubiServices which try to use
shared resources.

Conflict History Management
Conflict History Manager takes charge of maintaining
conflict history and determining priority of conflicting
context. To efficiently use the limited storage, it only
maintains conflict history for a short period of time. In
addition, to reflect user preference, Conflict History
Manager calculates the priority of conflicting contexts
based on Bayes theory which is widely used for

classification or prediction. Figure 4 shows the overall
architecture of Conflict History Manager.

Priority
Calculation

Priority
Calculation

Context
Accumulation

Context
Accumulation

Weight
Masking

Weight
Masking

Weight
Calculation

Weight
Calculation

Conflict history

Weight Table

feature vectors

User 1
- - -

User N

Conflict history
of a user

User 1
- - -

User N Masked history

Context
Selection

Context
Selection

Conflict context

Context Query

Context Priority
Figure 4. Conflict History Manager

As shown in Figure 4, Conflict History Manager receives
feedback and conflicting contexts of users from Conflict
Manager. Based on the contexts, Conflict History Manager
generates a feature vector containing information about the
conflict situation. Afterwards, the feature vector is stored in
a history file so that it can be retrieved whenever required.
Conflict History Manager then loads the feature vectors,
related to a specific user, from conflict history. Conflict
History Manager recalculates weights of conflicting
contexts based on the feature vectors. In order to obtain the
weight, Conflict History Manager applies Bayesian theory
to the feature vectors. Equation (1) shows Bayesian theory.
In the equation, feature vector X is composed of (x1, x2, x3,
x4, x5, x6). Each element of X is mapped to the value of
Service type, Location, Time, Gesture, Stress, and
Conflicting user. The result of conflict resolution Hj, which
is represented by (H1, H2) indicates the Target class.
Consequently, we obtain probability P(H1|X), for allowing
the current user of a service to continue using the service
when conflict arises, by multiplying posteriori probability
(X|H1) and prior probability P(H1).

)(
)()|(

)|(
XP

HPHXP
XHP jj

j = (1)

According to the equation, we assume that a current user of
a ubiService will continue using the service in case of a
conflict when posteriori priority P(H1|X) is greater then
P(H2|X). Otherwise, another user uses the service. So, a
priority of context is the difference between maximized
posteriori probability of P(X|H1)(H1) and P(X|H2)(H2).
Therefore, a weight of each feature is expressed by priori
probability of the feature P(xk|Hj)=skj/sj. skj is the number of
conflicting contexts having a specific value of sk within the
class Hj class. sj is the sum of values of conflicting
contexts belonging to Hj. Conflict History Manager
calculates weights of conflicting contexts of users based on
the weight table. The calculated results are updated in hash-
table and a weight file for future search.
Conflict History Manager provides priority of the
conflicting context based on the weight table when Conflict
Manager requests priority for a conflicting context Conflict
History Manager retrieves weights of the user, identified by
‘Who’ context of conflicting context, from the hash-table.

Afterwards, it applies the weights to the conflicting context
to Equation (2) to calculate posteriori probability. The
Conflict History Manager calculates posteriori probability
P(Xi|H1) when a current user will continue using the service,
and posteriori probability as P(Xi|H2) when another user
will use it.

∏
=

=
n

k
jkji HxPHXP

1

)|()|((2)

Finally, Conflict History Manager calculates a priority of
the conflicting context. Equation (3) shows the priority of
conflicting context. In the equation, P(X|H1)P(H1) is the
maximized probability of the current user to continue using
the service. P(X|H2)P(H2) is the maximized probability of
another user to use the service. Conflict History Manager
delivers the difference of these two probabilities to Conflict
Manager as a priority of the conflicting context.

Priority (Xi) = P(Xi |H1)P(H1)– P(Xi|H2)P(H2) (3)

Based on the conflict history and Bayesian theory, Conflict
History Manager adjusts the weight of conflicting context
using conflict history of users after conflicts are resolved. It
also assigns a priority to conflicting contexts of users based
on the weight table when conflicts arise.

IMPLEMENTATION AND EXPERIMENT
We have evaluated the effectiveness of the conflict
resolution method based on the ubiHome test-bed. The
proposed Conflict Manager selects one among several
users when multiple users attempt to access their registered
service. In addition, it decides to provide the service when
priority of the service is higher than the other services
located within a service area. Finally, we also measured
accuracy of the proposed method with four family
members

Experimental Setup
The proposed Conflict Manager was implemented with
J2SDK 1.4TM so that it can be applied to various
applications. As shown in Figure 5, we tested Conflict
Manager in ubiHome, a smart home test-bed at GIST [5].

Figure 5. ubiHome test-bed

As shown in Figure 5, we utilized various ubiServices such
as, television service, Internet service, music service, movie
service, light services, etc. These ubiServices offer
customized services to users. In addition to the services, we
also exploited various sensors: ubiCouch sensors,

ubiTrack, and ubiRemocon. The ubiCouch sensors,
comprised of on/off switches, detect user's behaviors. The
ubiTrack is infrared-based location tracking system that
tracks users’ location [6]. The ubiRemocons are a kind of
remote controllers, implemented with Personal Java, to
control these services.

Experimental Analysis
In order to measure accuracy of resolution method of the
proposed Conflict Manager, we experimented on user
conflict in two ways: i) a resolution method based on the
Bayesian theory and, ii) a resolution methods having fixed
priority. To test two methods, we employed television
service that users use in a home environment. While using
the television service, family members cause conflicts due
to their preferences and its broadcasts. In our experiment,
the television service selects a preferred program a user. It
decided a specific program of the user who has the highest
priority according to each selection strategy when conflicts
occurred. The service gathered feedback from users in pre-
defined amount of time and judged the accuracy on the
selection. The television service counts the number of
"incorrectness" and "correctness" of the selection. As the
result of the selection, we have built confusion matrix to
know how well it works. Table 1 shows the experimental
results of the proposed conflict resolution method

Table 1. Confusion matrix for conflict resolution (unit: %)

Users Father Mother Son Daughter
Father 81 8 4 7
Mother 8 79 7 6

Son 4 3 78 15
Daughter 5 6 14 75

As shown in table 1, the proposed resolution method
provides the television service to other users who have
lower priority in the conflict resolution having fixed
priority. This is because the conflict resolution method
assigned priorities to users based on their context. In
addition, accuracy of the resolution method was relatively
higher than the resolution method having fixed priority.
The improvement of accuracy was due to the fact the
resolution method reflected the changes of their preference
and resolution policy. Therefore, conflict solution could
resolve service conflicts caused due to use of services by
multiple users.
In addition, we configured properties of services to deal
with conflict among services. In our experimental setup, all
the services were in the same area. Especially, television,
and movie services were operated on the same computer.
Based on the properties, we monitored the services in
ubiHome in order to observe resource conflicts among
services. Table 2 shows the number of conflict among
services.

 Table 2. The number of conflict among services (unit: %)

Services Television Movie Music Light

Television - 33 56 11

Movie 54 - 25 21

Music 72 28 - -

Light 77 23 - -

In case of television service, most of the conflicts are
related to movie service. The rest of the conflicts are
associated with movie and music service. Movie service,
which shares sound, light, and display resource, is related
to all the services. In particular, conflicts of movie service
are mostly due to television service which is accessed by
users frequently. Besides, movie service also conflicts with
light service since the services use light resource. Music
service was related to television and movie service using
sound and display resources.

CONCLUSION
In this paper, we proposed the Conflict Manager to resolve
services conflicts among users and among applications. In
order to resolve conflicts among users, the proposed
Conflict Manager maintained the conflict history of users,
calculated the priority of user context with Bayes theory,
and then selected one user. In addition, Conflict Manager
detected conflicts among applications based on properties
of each service. These conflicts were resolved with the
priority so that the applications provided services without
causing conflicts. In our future works, however, we will
employ additional applications deal with the conflicts. We
will also observe the conflicts with users’ behaviors over
longer periods.

REFERENCES
1. Anind K. Dey, “Understanding and Using Context. Personal and

Ubiquitous Computing, Special issue on Situated Interaction and
Ubiquitous Computing, 5(1),. (2001)

2. Nicholas Hanssens, Ajay Kulkarni, Rattapoom Tuchinda, and
Tyler Horton, “Building Agent-Based Intelligent Workspaces,” In
ABA Conference Proceedings, June. (2002)

3. S. S. Yau, F. Karim, Y. Wang, B. Wang, and S.Gupta,
“Reconfigurable Context-Sensitive Middleware for Pervasive
Computing,” IEEE Pervasive Computing, joint special issue with
IEEE Personal Communications, 1(3), pp.33-40, July-September.
(2002)

4. S.Jang, and W.Woo, “ubi-UCAM: A Unified Context-Aware
Application Model”, Lecture Note Artificial Intelligence
(Context’03), Vol, 2680, pp.178-189, 2003

5. Y.Oh, W.Woo, "A unified Application Service Model for ubiHome
by Exploiting Intelligent Context-Awareness," Proc. Of Second
Intern. Symp. On Ubiquitous Computing systems (UCS2004), pp.
117-122,2004.

6. S.Jung, W.Woo, " UbiTrack: Infrared-based user Tracking System
for indoor environment," ICAT'04, 1, paper 1, pp. 181-184. (2004)

7. Garcia-Molina, H. Elections in Distributed Computer Systems.
IEEE Transactions on Computers, Vol, C-31, No. 1, pp. 48-59.
(1982)

Choonsung shin received the B.S degree in Computer
Science from Soongsil University in 2004. Now he is a
M.S. student in Department of Information and
Communications, Gwangju Institute of Science and
Technology (GIST) since 2004.
Research Interest: Context Awareness, Human Computer
Interaction, Ubiquitous/ Wearable Computing.

Woontack Woo received his B.S. degree in EE from
Kyungpook National University, Daegu, Korea, in 1989
and M.S. degree in EE from POSTECH, Pohang, Korea, in
1991. He received his Ph. D. in EE-Systems from
University of Southern California, Los Angeles, USA.
During 1999-2001, as an invited researcher, he worked for
ATR, Kyoto, Japan. In 2001, as an Assistant Professor, he
joined Gwangju Institute of Science and Technology
(GIST), Gwangju, Korea and now at GIST he is leading U-
VR Lab.
Research Interest: 3D computer vision and its applications
including attentive AR and mediated reality, HCI, affective
sensing and context-aware for ubiquitous computing, etc.

.

